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In the presence of aldosterone, plasma sodium in the high physi-
ological range stiffens endothelial cells and reduces the release of
nitric oxide. We now demonstrate effects of extracellular potas-
sium on stiffness of individual cultured bovine aortic endothelial
cells by using the tip of an atomic force microscope as a mechanical
nanosensor. An acute increase of potassium in the physiological
range swells and softens the endothelial cell and increases the
release of nitric oxide. A high physiological sodium concentration,
in the presence of aldosterone, prevents these changes. We pro-
pose that the potassium effects are caused by submembranous
cortical fluidization because cortical actin depolymerization in-
duced by cytochalasin D mimics the effect of high potassium. In
contrast, a low dose of trypsin, known to activate sodium influx
through epithelial sodium channels, stiffens the submembranous
cell cortex. Obviously, the cortical actin cytoskeleton switches from
gelation to solation depending on the ambient sodium and potas-
sium concentrations, whereas the center of the cell is not involved.
Such a mechanism would control endothelial deformability and
nitric oxide release, and thus influence systemic blood pressure.

aldosterone � blood pressure � cortical actin � epithelial sodium channel �
stiffness

A large body of experimental and clinical evidence supports
the view of a strong relation between sodium intake and the

development of hypertension and cardiovascular disease (1–4).
In contrast, potassium intake has been shown to have a beneficial
effect on the cardiovascular system (5–9).

Certain steroid hormones, particularly those controlling elec-
trolyte homeostasis in humans (e.g., mineralocorticoids such as
aldosterone), have gained increasing attention in relation to
cardiovascular disease (10). Endothelial cells are softened by
estrogens through activation of a plasma membrane sodium/
proton antiporter, yet are insensitive to progesterone and tes-
tosterone (11). Similarly, as shown in renal epithelium with
scanning ion conductance microscopy (12), aldosterone stimu-
lates endothelial cell volume, growth, and stiffness by activating
epithelial sodium channels (ENaCs) (13, 14). In contrast, glu-
cocorticoid hormones do not affect these parameters (15).

Small physiological changes in extracellular sodium concen-
tration directly stiffen vascular endothelium (16). As potassium
has a beneficial effect on cardiovascular function (17–20), we
have now examined the relation between extracellular potassium
and cell stiffness. Here, we show that potassium softens vascular
endothelium and increases the release of NO. It is suggested that
these changes in stiffness, mediated by potassium and sodium,
involve principally a dynamic viscous zone at the periphery of the
cell. It is proposed that such a submembrane compartment may
rapidly switch between solation (a change toward a fluid-like
state) and gelation (a change to a more solid state) depending
on ambient sodium and potassium.

Results
Superficial and Deep Stiffness Are Detectable in Living Endothelial
Cells. Typical indentation curves of living endothelial cells are not
exponential in shape. Because of the improved signal-to-noise

ratio with the use of a colloidal atomic force microscopy (AFM)
tip instead of a cone (i.e., sharp tip), the indentation curves
reveal at least two slopes (Fig. 1). The length of the first linear
slope is highly variable from a few nanometers to several
hundred nanometers. Deeper indentation leads to the appear-
ance of a second linear slope. In agreement with a previous
report (21), we assume that the first slope represents the plasma
membrane stiffness and includes a contribution from the sub-
membrane cortical cytoskeleton, whereas the second slope,
which is approximately three times larger than the first slope,
represents the stiffness of the inner bulk of the cell. Acute
changes in sodium or potassium affect only the first slope that is
produced by the cell’s shallow outer shell and leave the second
slope produced by the inner part of the cell unchanged.

Increasing Potassium Swells Endothelial Cells. AFM imaging of
living endothelial cells reveals that cell height and cell volume
increase when extracellular potassium is raised in a stepwise
fashion from 4 mM to 6 mM and 8 mM (Fig. 2). Addition of
barium to the bath solution containing 4 mM potassium initially
swells the cells but prevents changes in cell volume when
potassium is increased in the ambient solution. This experiment
indicates that endothelial cells have active potassium channels in
the plasma membrane that render the cell sensitive to changes
in extracellular potassium concentration.

Potassium Modifies Endothelial Cell Stiffness. In several series of
experiments, plasma potassium concentration was varied be-
tween 2 and 8 mM while ambient sodium was at either a low (130
mM) or high (150 mM) level. To study the effect of aldosterone,
each series was divided into two groups, one with and one
without the acute application of 0.45 nM aldosterone. The
aldosterone series was performed in cells that had already been
treated with aldosterone during their 48 h growth phase before
the acute stiffness measurements. Fig. 3 shows the results.
Clearly, the highest sensitivity to changes of potassium is ob-
served in the absence of aldosterone when a low sodium
permeability is expected (27% change from 4 mM to 6 mM
potassium at 130 mM sodium; P � 0.01). There is nevertheless
a decrease of cell stiffness even in the presence of aldosterone.
This change in cell stiffness is dependent on the lower sodium
concentration (17% change from 4 mM to 6 mM potassium at
130 mM sodium; P � 0.01). However, when sodium is increased
to 150 mM and aldosterone is present, cortical cell stiffness
reaches its highest value and now remains almost insensitive to
changes of potassium (6% change from 4 mM to 6 mM potas-
sium at 150 mM sodium; P � 0.10). Taken together, potassium
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softens cells more effectively when sodium level is low and
aldosterone is absent.

Depolymerization of Cortical Actin by Cytochalasin D Softens Cells.
Stiffness measurements on endothelial cells have shown that a low
concentration of cytochalasin D (CD; range, �1 �M) can desta-
bilize cortical actin (21). To test whether such a change in stiffness
can be evoked in the GM7373 endothelial cells, CD was applied (1
�M) while cortical stiffness was measured. A large change in the
first slope of the indentation curve became visible within minutes
of CD application (Fig. 4). The changes are interpreted as being
caused by softening and broadening of the cortical zone, while, in
contrast, stiffness of the inner bulk of the cell did not change.

Potassium Has no Effect on Cortical Stiffness when Cortical Actin Is
Destabilized. Fig. 5 shows the time course of the stiffness measure-
ments after CD application and the lack of effect when potassium
was then increased from 4 mM (initial potassium concentration in
this experimental series) to 6 mM and 8 mM. In addition, this figure
shows that the changes in stiffness are limited to the cell cortex
because no changes consistent with a change at the center of the cell
can be observed. Thus, only the outer zone of the cell is involved
in the observed stiffness changes.

Activation of ENaC by Trypsin Stiffens Cells. A low concentration of
the serine protease trypsin (range, �1 �g/mL) is known to activate
functionally silent (i.e., inactive) ENaCs expressed in fibroblasts
(22). To test whether facilitated sodium influx into the cell could
change cortical stiffness, we applied 10 ng/mL trypsin while cortical
stiffness was measured. Original indentation curves are shown in
Fig. 4. After a delay of approximately 10 min, the first linear slope

of the indentation curve shortened and grew steeper, indicating that
the cortical zone became smaller and stiffer.

Amiloride Blocks the Trypsin-Mediated Increase in Cortical Stiffness.
Trypsin (10 ng/mL) stiffens the submembranous cortical cell
zone after a delay of approximately 10 to 15 min. Amiloride (1
�M), a selective blocker of ENaC, completely inhibits this
response (Fig. 6). This indicates that activation of silent ENaC
in the plasma membrane and Na� influx are responsible for the
stiffness increase in the submembranous cortex.

Nitric Oxide Release Is Increased at High Potassium Levels. Nitric
oxide synthase is localized beneath the plasma membrane in the
submembranous cortex of endothelial cells (23). It is known that
monomeric actin (G-actin) can serve as a stimulating protein of NO
synthesis (24–26). As the submembranous cortex softens when
potassium is increased and such a solation is likely caused by the
transformation of polymeric actin (F-actin) into monomeric actin
(G-actin), three series of experiments were conducted in which
nitrite concentration in the supernatant culture medium was mea-
sured. GM7373 cells were cultured in flasks on a shaker that
rhythmically tilted a thin layer of medium across the apical cell
surface. The rhythmic movement of the medium across the cell
surface was intended to mimic shear stress and thus raise NO
synthesis to levels that can be reliably quantified (Fig. 7). In the first
series of experiments, cells were cultured in low-sodium (135 mM)
medium in the absence of aldosterone. In this series, nitrite
concentration (used as an index of NO release into the medium)
was found constant at extracellular potassium concentrations be-
tween 2 and 4 mM. A further increase to 6 and 8 mM, however,
shifted nitrite concentration to significantly higher levels, indicating
an increased release of NO into the supernatant. In a second series
of experiments, 0.45 nM aldosterone was present in the (low-
sodium) culture medium. As apparent from Fig. 7, nitrite formation
was found significantly decreased at potassium concentrations of 2,
4, and 6 mM, most likely because of the presence of aldosterone in
the medium. Furthermore, nitrite formation was unaffected by
increases in potassium concentration between 2 and 6 mM. Only
when potassium was increased further to 8 mM, significantly higher
nitrite concentrations could be detected in the supernatant. In a
third series of experiments, cells were cultured in high-sodium
medium in the presence of aldosterone. Under these conditions,
cells did not respond anymore to changes of extracellular potassium
between 2 and 8 mM. Taken together, the findings suggest that a
high potassium level can stimulate NO release as long as ambient
sodium concentration is low, and aldosterone’s effect on the entry
of sodium into the cell again plays the role of a key modulator.

Discussion
Hypertension and cardiovascular disease are responsible for the
greatest number of deaths worldwide (27). It is generally ac-
cepted that high sodium intake raises the arterial blood pressure
whereas high potassium intake has the opposite effect (5, 7,
17–20). We have recently shown that a small physiological
increase in extracellular sodium directly raises the stiffness of
vascular endothelium and decreases its release of NO (16). This
response is mediated by the ENaC. Here we report that an
increase of extracellular potassium concentration significantly
diminishes the stiffness of endothelial cells and improves the
release of NO. Increases in potassium concentration to values
such as those that occur during physical exercise in muscle, up
to 12 mM (28, 29), or during neuronal activity in the brain (30),
greatly soften endothelial cells. A similar softening of vascular
endothelium has been shown recently when cells were are either
exposed to estrogens (11) or to the �-blocker nebivolol, an
antihypertensive agent that mimics the estrogen response in
endothelial cells (31). Thus, the application of estrogens, nebivo-
lol, and high potassium have two cellular responses in common:

laser
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Fig. 1. Indentation technique using AFM. (A) Cantilever with particle tip. (B)
Principle of the stiffness measurement using an AFM. (C) Indentation curve
with two different slopes. After engagement of the cell surface with the
particle tip, the cantilever will be bent as the cell is indented. A laser beam (as
displayed in B; not shown in C) reflected from the cantilever quantifies this
signal. From the two linear portions of the indentation curve, the cell stiffness
can be calculated over the first few hundred nanometers of indentation
(cortical cell stiffness) or beyond 800 nm of indentation (cell center).
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they swell and increase NO release. This swelling is different to
the increase in cell size observed after aldosterone treatment (13,
14) when cells mainly increase their surface area, f latten, and
stiffen (15). It is tempting to speculate that soft endothelial cells
have a larger degree of physical compliance compared with stiff
ones, and more easily undergo rapid morphological changes that
occur during cardiac pulsations and thus generate more NO.

Ion-Driven Solation—Gelation Dynamics in the Cell Cortex. Cell types
of diverse function are subjected to substantial stretch. For

instance, upon physical stress, human airway smooth muscle cells
promptly fluidize and then slowly re-solidify (32). Endothelial
cells are subjected to large changes in cell shape (e.g., during
dilation/constriction of blood vessels, particularly with each
contraction of the heart) and can best adjust to such alterations
if the deformability (i.e., physical compliance) of the cells is high.

We have defined two linear slopes in the indentation curves:
the first tends to be flat whereas the second is steeper. The first
f lat slope indicates a low stiffness and is limited to the submem-
branous cortex of the cell. In agreement with recent force
measurements applying an newly developed non-AFM method
(33), there is a fluidic layer beneath the plasma membrane, which
is highly dynamic in terms of thickness and viscosity. The cortical
cytoskeleton of vascular endothelial cells is highly dynamic (34)
and the state of polymerization of cortical actin determines the
structure and mechanical properties of this layer (21, 35).
Monomeric globular actin (G-actin) can rapidly polymerize into
filamentous actin (F-actin), which should cause a rapid change
in local viscosity. The cytochalasin experiments described here
indicate that a destabilized actin that is switching from F-actin
to G-actin is associated with solation of the cortex. Therefore, we
propose that the increase in potassium softens the cortical actin
cytoskeleton by changing F-actin to G-actin. G-actin is known to
co-localize with the endothelial NO synthase (eNOS) and to
increase endothelial NO synthase activity (24, 25). This matches
well with the present observation that NO release from the
endothelial cells into the medium is increased when extracellular
potassium level is elevated.

Sodium is possibly a functional antagonist in this system.
Sodium influx, as triggered in the present experiments by the
activation of ENaC by aldosterone or trypsin, increases
the viscosity of the submembranous layer and thus stiffens the
cytoskeleton. When sodium is maintained in the upper physio-
logical range, the high viscosity dominates, which prevents an
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Fig. 2. AFM imaging of living vascular endothelial cells, exposed to increasing concentrations of extracellular potassium. Paired experiments showing the same
cells at different conditions. Numbers on cells indicate the respective cell heights (in �m). Numbers (Left, Lower) refer to the total volume of the cells displayed.
The graph shows the mean values of cell heights at the 3 different potassium concentrations in absence and presence of 3 mM barium (potassium channel block).
Cells swell in response to increasing potassium. *Significant increase in cell height compared with the initial values measured at 4 mM potassium; n � 7, P � 0.01,
paired Student t test. Barium prevents this response.
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increase in potassium from having an effect. A possible expla-
nation is that G-actin is a negatively charged protein and, as a
result of the smaller hydration shell size of potassium compared
with sodium (36), the affinity of G-actin for potassium is most
likely greater than that for sodium.

Membrane Potential as a Possible Regulator of Cell Stiffness. In
endothelial cells, the membrane potential is highly variable (37).
One factor that may cause this variability is a change in potas-
sium transport across the cell membrane. Starting at low extra-
cellular potassium concentrations, an increase in potassium can
paradoxically hyperpolarize the membrane potential, e.g., in

endothelial and smooth muscle cells (38). Perhaps, therefore, a
rapid change in membrane potential can directly or indirectly
affect the state of polymerization of the submembrane cortical
actin network.

There is a link between membrane potential and NO synthesis.
Small- and intermediate-conductance calcium-activated potas-
sium channels directly control NO synthesis in human vascular
endothelial cells (39). Large-conductance calcium-activated po-
tassium channels hyperpolarize vascular smooth muscle cells and
thus decrease vascular tone. This channel type has been shown
to be down-regulated in hypertension (40). As endothelial cells
and smooth muscle cells are coupled via myo-endothelial gap
junctions (41), electrical signals originating from either cell type
will spread longitudinally and trans-vertically in the blood vessel
and set the cell potentials in a specific vessel segment (42–44).

Fig. 4. Indentation curves obtained in 2 experiments on vascular endothelial cells. For better demonstration, 2 individual cells with a small (Left) and large
(Right) initial cortical soft zone were chosen. Left, Before the application of CD, the first linear slope is short. It indicates that the cortical zone is shallow. Ten
min after CD application, the cortical zone has broadened to several hundred nanometers. In addition, the first slope flattened, indicating that the cortical zone
softened at the same time. Right, Before the application of trypsin, a broad and soft cortical zone is detected in this cell. Twenty-five min after addition of trypsin,
this zone has shrunk. In addition, the rather steep slope indicates that the cortical zone not only shrunk but stiffened at the same time.
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In contrast to potassium channels, any activation of ENaCs
should depolarize the plasma membrane potential and thus
switch G-actin to F-actin in the submembranous cell cortex. The
present data support this view because activation of ENaC by
trypsin (i.e., cell depolarization) stiffens the layer (most likely the
cortical actin network) beneath the apical cell membrane and
amiloride blocks this effect.

In conclusion, we have demonstrated that extracellular sodium
and potassium, by different mechanisms, determine the physical
compliance of endothelial cells and that aldosterone is an
important modifier of this process. The ion-evoked changes in
stiffness fluctuate between states of solation and gelation and are
restricted to the submembranous cortex.

Methods
Endothelial Cell Culture. Bovine aortic endothelial GM7373 cells (DSMZ) were
grown in culture as previously described (16). Briefly, confluent GM7373 cells
(45) were cultured in T25 culture flasks using DMEM (Invitrogen) with addition
of NaHCO3, penicillin G, streptomycin (Biochrom), and 20% FBS (PAA Clone).
After reaching confluence cells were split and then cultured on thin (diameter,
15 mm) glass coverslips. The coverslips were placed in Petri dishes filled with
culture medium. GM7373 cells formed confluent monolayers within 48 h (at
37 °C, 5% CO2).

Chemicals. Aldosterone (d-aldosterone; Sigma-Aldrich) was dissolved in eth-
anol (1 mM stock solution, stored at 4 °C for 2 weeks). Final concentration,
measured in the culture medium (RIA, Adaltes) was 0.45 nM. Amiloride
(Sigma-Aldrich), a selective blocking chemical of the ENaC, was dissolved in
water, at a final concentration of 1 �M. CD (Sigma-Aldrich) was used to
depolymerize the cortical actin cytoskeleton. Using AFM, destabilization of
cortical actin can be detected at a concentration of 0.1 �M CD. CD was
dissolved in buffered solution and a dose-response relationship obtained. A
half-maximal change in cortical cell stiffness was noted 10 min after applica-
tion of 0.5 �M CD. Therefore, a concentration of 1 �M CD was used, assuming
this concentration to be low enough to attack only the cortical actin but to be
sufficiently high to allow the detection of changes in stiffness using AFM. The
serine protease trypsin (Sigma-Aldrich) was used to activate the ENaC (46). A

concentration of 10 ng/mL trypsin was found to be sufficient to modify the
AFM indentation curves and to detect the gelating effect of sodium.

Nitrite Concentration Measurements. Formation of NO in response to changes
of extracellular potassium was determined from the accumulation of nitrite/
nitrate (stable breakdown products of NO) in the culture medium (enriched by
250 �M L-arginine) of bovine aortic endothelial GM7373 cells (DSMZ). A
slightly modified protocol than that published previously was used (16). In
short, confluent GM7373 cells (45) were cultured in T75 flasks either in low-
sodium medium (135 mM) or high-sodium medium (150 mM), in the presence
or absence of 0.45 mM aldosterone. Initially, potassium-free medium was
purchased (Invitrogen), to which potassium was added at a level between 2
and 8 mM. Osmolality was kept constant for all media, adding mannitol as
appropriate. FBS was reduced from 20% to 5% to prevent protein interfer-
ence during nitrite analysis. To compensate for the lack of macromolecules in
the media, polyvinylpyrrolidone (40 kDa) was added to a final concentration
of 35 g/L. Only 5.5 mL of medium was added to the individual culture flasks.
Cultures were placed on a shaker inside the incubator and rhythmically shaken
along the longitudinal flask axis (0.5 Hz). After 24 h, the harvested medium
was centrifuged (134 � g) and the supernatant was pressed through a 30-kDa
exclusion filter (Amicon Ultracell 30 K; Millipore) by a 90 min centrifugation at
5,000 � g at 18 °C. The filtrate (4 mL) was lyophilized and resuspended in 266
�L H2O. Finally, the solution was mixed with Griess reagent and absorbance
measured spectrophotometrically at 546 nm. Nitrite concentration was de-
termined using a standard curve of known concentrations of NaNO2 (1–200
�M). Stepwise filtering was necessary to remove proteins and polyvinylpyr-
rolidone from the solution. Lyophilization and subsequent re-suspension in a
small volume (concentration factor was 15) shifted nitrite concentration to a
better detection range. Rhythmic rocking of the culture flasks (i.e., rhythmic
flooding of the cells with a small volume of medium) mimicked shear stress
and raised NO formation to levels that could be reliably measured.

Endothelial Cell Volume and Stiffness Measurements. Volume of living GM373
cells was determined with AFM techniques as described previously (14, 15).
Volume and stiffness of the endothelial cells were measured with soft canti-
levers (MLCT-contact microlevers; spring constant, 0.01 N/m; Veeco). However,
for stiffness measurements, a so-called colloidal probe tip was used (sphere
diameter, 10 �m; Fig. 1). Colloidal probe tips are more suitable for cell stiffness
measurements compared with measurements with sharp tips because the area
of interaction between tip and cell is larger and thus mechanically less noisy
(47). In principle, the AFM is used as a mechanical tool, i.e., the AFM tip is
pressed against the cell so that the membrane is indented (Fig. 1). This distorts
the AFM cantilever, which serves as a soft spring. The cantilever deflection,
measured by a laser beam when reflected from the gold-coated cantilever,
permits force-distance curves of single cells. The slope of such curves is directly
related to the force (expressed in Newtons), defined here as stiffness, neces-
sary to indent the cell.

Similar to previous investigations (21), two different slopes could be iden-
tified depending on the depth of indentation. The initial flat slope (indenta-
tion depth to several hundred nanometers) reflects the plasma membrane
stiffness, including the cortical cytoskeleton, whereas the late steep slope reflects
the stiffness of the cell center. Both slopes were analyzed and displayed.

Force-distance curves were obtained on single cells in paired fashion, i.e.,
potassium was increased stepwise while stiffness was measured at a rate of
approximately 0.2 Hz in one individual cell. Measurements were performed on
living cells at 37 °C using a feedback-controlled heating device (Veeco). The
cells were bathed in Hepes buffered solution (standard composition in mM: 135
NaCl; 5 KCl; 1 MgCl2; 1 CaCl2; 10 Hepes, pH 7.4). Sodium (130–150 mM) and
potassium (2–12 mM) concentrations were varied as appropriate. Iso-osmolality
was obtained in all experiments by addition of mannitol if applicable.

Statistics. Data are shown as mean values � SEM. Significance of differences
was evaluated by the paired or unpaired Student t test if applicable. Overall
significance level is P � 0.05.
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concentrations. Three series of experiments were performed (low sodium, low
sodium plus aldosterone, high sodium plus aldosterone). The numbers on top
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Asterisk on top of a column indicates a significant difference compared with
the mean values of the same group of experiments. §Significant difference
versus all other mean values of the figure except those with the same symbol.
#Significant difference versus respective mean values in the different groups
of experiments. Significantly different is P � 0.05 (unpaired Student t test).
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