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Abstract 

Malaria, the fifth leading cause of disease by infectious agents, has claimed the lives of 

approximately 584,000 people while posing a risk to 3.2 billion more worldwide, according to 

latest global estimates (World Health Organization, 2014). Artemisinin is a potent antimalarial 

found in Artemisia annua and is currently used in combination with other antimalarial drugs 

(artemisinin combination therapy; ACT), mainly against the infectious Plasmodium parasites. 

The use of artemisinin and its derivatives in ACT is currently the WHO recommended treatment 

for malaria, but is relatively expensive to many endemic regions. Artemisinin resistance in the 

Plasmodium parasite has recently developed, decreasing the potency of ACT, and initiated the 

search for alternative treatments. A. annua dried leaves taken orally has been found to be more 

efficacious than ACT, perhaps due to increased bioavailability of artemisinin.  

 

In this current project, a Caco-2 intestinal model was used to test changes in the bioavailability 

of artemisinin. The experiments were performed to simulate the effects of specific 

phytochemicals (at various concentrations) on artemisinin transport from the intestinal lumen 

into the serum. Sixty minute transport studies were analyzed across the monolayer at fifteen 

minute intervals, comparing artemisinin transport in combination with two flavonoids (quercetin 

and rutin), two phenolic acids (chlorogenic and rosmarinic acid), and one monoterpene 

(camphor). Of all the performed transports, only camphor (at a 1:10 molar ratio to artemisinin) 

showed a significant increase in artemisinin transport compared to the transport of artemisinin 

alone. Additionally, artemisinin transport across Caco-2 monolayers was found to vary with 

artemisinin concentration. 
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1.0 Introduction and Background 

1.1 Malaria 

Malaria is a life-threatening illness, which strains economic growth and reproduction in endemic 

regions. Globally, it is the fifth leading cause of disease by infectious agents (Centers for Disease 

Control and Prevention, 2010).  The disease is caused by Plasmodium parasites, the most deadly 

strain being P. falciparum, which is transmitted to humans through the bite of an infected 

mosquito. Other strains that cause malaria in humans include P. vivax, P. malariae, and P. ovale. 

Latest global estimates from December 2014 confirmed 198 million cases (uncertainty range 

from 124 to 283 million) and 584,000 deaths (uncertainty range from 367,000 to 755,000) in 

2013 were attributed to this disease. Of the many deaths associated with malaria, approximately 

78%, were African children under the age of 5. Currently, 3.2 billion people world-wide are at 

risk of becoming infected with malaria. Risk extends into all 6 of WHO’s territories, where 1.2 

billion are at high risk, which is described as greater than a 1 in 1000 chance of contracting the 

disease (World Health Organization, 2014).  

 

One of the most influential risk factors in contracting malaria is human behavior, specifically 

social and economic factors, surrounding the disease.  In many poverty-stricken regions where  

malaria is endemic, there is often a lack of access to adequate housing or preventative equipment 

against mosquitos, lack of knowledge against disease, and cultural objection against treatments 

that leave the citizens vulnerable to infection (Centers for Disease Control and Prevention, 

2012). Agricultural methods frequently foster mosquito habitats by generating pools of standing 

water, and supplying secondary blood meal sources including farm animals. Together these 

conditions entice greater populations of mosquitoes to those areas. Lastly, human activities such 

as war, migration, and travel expose otherwise healthy, non-immune individuals to areas where 

malarial transmission is high (Centers for Disease Control and Prevention, 2012). Interestingly, 

individuals with the sickle cell trait are relatively protected against P. falciparum and those with 

a negative Duffy blood group are resistant to P. vivax infection (Friedman, 1978; Langhi & 

Bordin, 2006).  
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Figure 1: Life cycle of the malaria parasite in the human and mosquito hosts (National 

Institute of Allergy and Infectious Diseases, 2012) 

The life cycle of malaria begins after an infected, female Anopheles mosquito bites and injects 

sporozoites into the blood stream (Figure 1; National Institute of Allergy and Infectious 

Diseases, 2012). The sporozoites then invade liver cells where they continue to mature and 

divide for a period of 5-16 days. Afterwards, the parasites invade red blood cells where they 

reproduce as merozoites and also form gametocytes. Symptoms are seen in humans 

approximately 10 to 15 days after the initial mosquito bite.  

 

Malaria cases are typically categorized as uncomplicated or severe (Centers for Disease Control 

and Prevention, 2010). Uncomplicated malaria is usually characterized by an episode of 6-10 

hours consisting of a cold stage (chills, shivering), a hot stage (fevers, headaches, vomiting), and 

a sweating stage (sweats, fatigue, tiredness). It is important to keep in mind that this disease is 

entirely treatable as long as timely and appropriate treatment is administered. In severe malaria, 

there is organ failure, abnormalities in blood, and/or afflictions with metabolism (Centers for 

Disease Control and Prevention, 2010). If the brain becomes infected, cerebral malaria results in 

symptoms of seizures, paralysis, epilepsy, and other neurological impairments. Of cerebral 

malaria survivors, 5-20 % may develop permanent disabilities due to brain damage (Breman et 
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al., 2001). Respiratory and renal systems also may be targeted, resulting in acute respiratory 

distress syndrome and kidney failure, respectively. Blood complications may include severe 

anemia, hemoglobinuria (blood in urine), and coagulation irregularities (Centers for Disease 

Control and Prevention, 2010). In metabolism, metabolic acidosis (high acidity in blood and 

organs) and hypoglycemia (low blood glucose) may occur in patients. To prevent fatality, 

patients experiencing severe malaria must seek immediate, dynamic medical care. 

 

Besides the burden of illness and death, malaria can have secondary burdens including changes 

in household roles, deficits in education, migration, treatment expenditures, and forgone 

incomes. Malaria may be responsible for as much as 50% of medically-related school absences, 

including loss of 11% of school days in primary school, and 4.3% of secondary school days. 

Cognitive deficiencies from cerebral malaria brain damage, including inability to carry out 

executive functions, can also lead to educational deficits (Sachs & Malaney, 2002).  

 

Increased preventative measures and the use of standard drug combination treatments have 

resulted in the decrease of worldwide malaria (Bhattarai et al., 2007). Safety measures include 

vector control, insecticide-treated mosquito nets (ITN) and sprays, chemoprevention (preventing 

blood stage infections in humans), and case management. Control and elimination efforts totaled 

2.7 billion dollars in 2013, but most notably reached three times that in 2005 (World Health 

Organization, 2014). Since 2013, artemisinin-based combination therapies (ACTs) have been 

adopted in 79 of the 88 countries endemic to P. falciparum (World Health Organization, 2014). 

Although mortality rates from malaria have decreased globally by 47% since 2000, the disease 

still remains a devastating problem in many regions of the world including Africa, Asia, and 

South America (Figure 2; World Health Organization, 2014). 
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Figure 2: Countries with ongoing transmission of malaria, 2013 (World Health 

Organization, 2014) 

 

1.1.1 Malaria Treatments and Parasite Drug Resistance 

Many of the current malaria treatments are derived from plants that originated in several 

countries around the world. In Peru and Bolivia, cinchona tree bark was a treatment for fevers, a 

common symptom of malaria. Cinchona bark was brought to Europe and in 1820, the 

antimalarial, quinine, was extracted. Upon synthesizing derivatives of quinine, pharmaceutical 

chloroquine, a 4-aminoquinoline, was introduced to the public (Faurant, 2001; Petersen, et al., 

2011). Chloroquine is absorbed efficiently when taken orally and has a relatively low safety 

margin in regards to dosage administration (World Health Organization, 2001). 

 

In the past, pharmaceutical quinine derivatives, such as chloroquine and amodiaquine, were used 

to treat malaria. Although these drugs are currently used less because drug resistance has 

increased, they may still be used in some regions where patients have acquired partial immunity 

through recurrent malaria incidence, such as in Africa. Although chloroquine mechanisms of 

action are not fully understood, the drug is thought to accumulate in the parasite’s digestive 

vacuole, inhibiting the parasite’s degradation of hemoglobin. This allows free floating heme to 

poison the parasite, resulting in a permeable outer membrane and eventual parasite death 

(Petersen, et al., 2011).  
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Antimalarial drug resistance is defined as the ability of a parasite strain to survive and/or divide 

regardless of a specific drug’s recommended dosage (World Health Organization, 2001). In the 

1900s, Plasmodium parasites started becoming resistant to chloroquine, causing severe 

symptoms and high mortality rates among those infected (Petersen, et al., 2011; Gasasira et al., 

2003). Initial overuse of chloroquine not only as an anti-malarial, but as a miracle drug to treat 

all afflictions, may have contributed to this resistance (Faurant, 2001). The drug’s long half-life 

of 60 days is another factor possibly contributing to resistance, because it allows extended 

parasite exposure to sub-therapeutic drug concentrations. Specifically, mutations in the parasite’s 

chloroquine-resistant transporter gene (MAL7P1.27), which encodes for a transmembrane 

protein in the digestive vacuole, prevents chloroquine from accumulating (Petersen, et al., 2011). 

Despite cases of resistance, chloroquine is still used in some regions to fight against P. vivax 

infections (World Health Organization, 2014).  

 

Eventually, sulfadoxine-pyrimethamine was used as a replacement for chloroquine. A study in 

Uganda found that this drug was very effective in terms of parasite and clinical symptom 

clearance when combined with amodiaquine (Gasasira et al., 2003). Coulibaly et al. (2002) 

showed that sulfadoxine-pyrimethamine treated uncomplicated malaria with a greater than 99% 

efficacy, while chloroquine treatments resulted in 85-90% efficacy. The study further reiterated 

sulfadoxine-pyrimethamine as a dose-dependent drug that has been approved as a second-line 

treatment defense against malaria.  

 

1.2 Current Malaria Treatments  

Artemisinin, a sesquiterpene trioxane lactone, is a unique and highly effective antimalarial 

compound that was isolated in 1972 from the annual plant Artemisia annua. (Figure 3; Christen 

& Veuthey, 2001; van Agtmael et al., 1999). Originally native to China, A. annua has been used 

in Chinese traditional medicine for thousands of years in herbal tea infusions to treat fever and 

chills associated with malaria (World Health Organization, 2006; Mueller et al, 2004). 

Furthermore, artemisinin has been known to exhibit prophylaxis as reported by Ogwang et al. 
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(2011). Ugandans who ingested A. annua tea weekly saw an 80% decrease in malaria symptoms 

compared to those not regularly drinking the tea. 

 

Figure 3: Artemisinin structure 

Artemisinin, was publically introduced in 1979 (Carbonara el al., 2012; Li & Zhou, 2010). It has 

a very short half-life of 2-5 hours, indicative of low prophylactic properties as well as low 

resistance and high permeability across the blood-brain barrier; all of  which makes it a good 

drug for treating cerebral malaria (de Vries & Dien, 1996; Petersen et al., 2011; Augustijns et al., 

1996; Niu et al., 1985). Artemisinin derivatives are commonly used in place of artemisinin 

because they have increased solubility in either water or oil and thus, increased antimalarial 

properties (Golenser et al., 2006; World Health Organization, 2001). These artemisinin 

derivatives may include artether, artemether, artesunate, and dihydroartemisinin (Figure 4; 

World Health Organization, 2012).  

 

Figure 4: Artemisinin and derivatives (World Health Organization, 2012) 
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Structurally, artemisinin and its derivatives are similar, containing an endoperoxide bridge that 

plays an essential role in specific and non-specific mechanisms of action against the malarial 

parasite (Carbonara el al., 2012; Li & Zhou, 2010; World Health Organization 2006). The 

endoperoxide bridge is cleaved by iron in the parasite’s digestive vacuole, producing carbon 

radicals, which have a negative effect on endocytosis of P. falciparum, as well as on parasite 

hemoglobin digestion (Li & Zhou, 2010; Eastman & Fidock, 2009).  

 

Other mechanisms of action for artemisinin and its derivatives may include interference with 

parasite transport proteins, disruption of mitochondrial function, modulation of host immune 

function, and inhibition of angiogenesis (blood cell formation) (Golenser et al., 2006). Inhibition 

of nutrient uptake and prevention of parasite attack on red blood cells represent some of the 

artemisinin mechanisms of action against P. falciparum (Hoppe et al., 2004). Additionally, 

artemisinin inhibits the function of the Kelch 13 (K13) protein on the propeller domain in P. 

falciparum. This protein is important for interactions between protein sites and regulates an array 

of cellular function in the organism, such as protein degradation and responses to oxidative stress 

(Adams et al., 2000). Artemisinin disrupts these functions in the organism, allowing for rapid 

parasite clearance and recovery from malaria (Straimer et al., 2015). The relationship between 

this protein and artemisinin’s mode of action was determined when K13 was identified as the 

molecular marker for emerging resistance to the drug (Ariey et al., 2014). Thapsigargin, similar 

in structure to artemisinin, but lacking an endoperoxide bridge, inhibits the 

sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase (SERCA) within the parasite (PfATP6ase) 

(Eckstein-Ludwig et al., 2003; O’Neill et al., 2010). Without this specialized Ca2+ ATPase, 

calcium is not appropriately transported throughout the cells of the parasite, leading to problems 

with protein folding and signaling (Eckstein-Ludwig et al., 2003). After activation by iron, 

artemisinin binds to the PfATP6 protein in the parasite, inactivating the protein and causing the 

parasite to die (Jung et al., 2005; O’Neill et al., 2010). 

 

Resistance to pure artemisinin malaria treatment as well as recrudescence, or recurrence, by 

reinfection poses a great risk (Golenser et al., 2006). Therefore, use of artemisinin-based 

combination therapy (ACTs) followed the spread of untreatable malaria. ACTs showed fast 

reduction in parasite biomass and overall clearance, as well as rapid elimination of patient 
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symptoms and diminution of gametocytes (World Health Organization, 2011). The short half-life 

of artemisinin derivatives requires coupling with longer half-life antimalarial drugs for enhanced 

potency and reduced chance for resistance. In 2005, the World Health Organization (WHO) 

advised that ACT be used as the primary treatment option for patients afflicted by the disease. 

Such treatment uses a combination of an artemisinin derivative in addition to another 

antimalarial medication that has proven effective. The artemisinin derivative mainly eliminates 

P. falciparum parasites, and the co-drug, commonly mefloquine amodiaquine, and piperaquine, 

is used to eliminate any artemisinin-resistant parasites (World Health Organization, 2011).  

 

Unfortunately, however, artemisinin-resistance in P. falciparum now is found in Cambodia, the 

Lao People’s Democratic Republic, Myanmar, Thailand, and Vietnam (Figure 5; World Health 

Organization, 2014; Straimer et al., 2015). The Thailand-Cambodia border serves as regions of 

high artemisinin resistance. Based on a survey of patients from two different hospitals, Dondorp 

et al. (2009) discovered that malaria-stricken patients in western Cambodia took longer to 

recover from P. falciparum after ACT treatment than patients from Thailand.. In attempts to 

combat P. falciparum resistance in the Greater Mekong sub-region, the WHO recognized four 

priority areas of control: better intervention plan for all-risk groups, stricter case management, 

more publically-accessible information about resistance, and greater response and support 

(World Health Organization, 2013).  

 

Figure 5: Areas of high artemisinin resistance in South-East Asia, December 2014 (World 

Health Organization, 2014) 
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Ashley et al. (2014) also observed that in regions of resistance, extending the ACT treatment for 

6 days (as opposed to 3) allowed for a shorter parasite clearance half-life. Although ACT 

resistance occurred, prolonged treatment allowed for parasite clearance and gave hope for full 

patient recovery. These results suggested, however, that eventually additional mutations will 

likely occur in the parasite and the 6-day treatment plan will also fail (Ashley et al., 2014). 

Therefore, finding alternative treatment options is becoming important, especially for malaria 

endemic regions.  

 

Recently, P. falciparum has shown some resistance to artemisinin due to mutations on 

chromosomes 5 and 13 in the parasite. When amplified, the P. falciparum multidrug resistance 

transporter 1 (PFE1150w) located on chromosome 5, reduces the parasite susceptibility to 

artemisinin (Petersen et al., 2011). More recent studies suggest that artemisinin resistance is 

caused by point mutations of the PF3D7_1343700 domain on chromosome 13 encoding a K13 

(Kelch 13) protein, which regulates the parasite’s propeller (Ariey et al., 2013; Takala-Harrision 

et al., 2014). Due to this developing artemisinin resistance, some ACTs (dihydroartemisinin–

piperaquine, artemether–lumefantrine, artesunate–sulfadoxine–pyrimethamine, and artesunate–

mefloquine) have shown low parasite clearance at the current WHO recommended dose (Ashley 

et al., 2014).  

 

At specific sites in Asia and Africa, patients were given a dose of artesunate for either 1 or 3 

days, followed by a 3-day course of ACT (Ashley et al., 2014). Blood samples were taken every 

6 hours to determine parasite clearance half-lives, which ranged from 1.9 hours to 7.0 hours. In 

regions where P. falciparum had the kelch13 protein mutation, a longer parasite clearance half-

life (length of time for 50% of peripheral blood parasite density to decrease) was observed 

(Ashley et al., 2014; Straimer et al., 2015). A long drug half-life is indicative of increased 

resistance, indicating the emergence of parasite resistance to ACT (Petersen et al., 2011).  

 

Further research conducted by Elfawal et al. (2015) showed that consumption of dried A. annua 

leaves could be successful in prolonging artemisinin-resistant Plasmodium strains. When P. 

chabaudi-infected mice were given a single dose treatment of either pure artemisinin or 

powdered dried leaves of A. annua at a low (24 mg/kg) or high (120 mg/kg) concentration of 
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artemisinin, the percentage of parasitized red blood cells was found to be statistically greatest for 

the high-artemisinin whole plant treatment 16-48 hours post-treatment. Similar parasitemia 

reduction was seen in mice treated with either the high pure artemisinin or the low whole plant 

treatment, although lesser than high whole plant. Mice infected with P. yoelli and treated with 

high whole plant treatment for 9 consecutive days displayed complete parasite clearance 14 days 

post infection, whereas the high pure artemisinin treatment did not clear until 18 days post 

infection. Delayed artemisinin resistance was also shown in mice infected with P. chabaudi 

when whole plant was administered compared to pure artemisinin (Elfawal et al., 2015). This 

data gives suggestive evidence that whole A. annua leaves may be a feasible and more effective 

treatment in combating resilient malaria strains.  

 

Viability of ACT has decreased in malaria endemic regions due to this emerging artemisinin 

resistance, as well as pressures of economic stability. Most people who contract malaria are 

impoverished, and current antimalarial treatments are not cost effective. In 2007 the WHO 

conducted a cost benefit analysis in Papa New Guinea evaluating one conventional malaria 

treatment and 3 ACTs. This study included costs of clinic visits, medications, and tests. The 

costs of 4 different therapies ranged from 3.93 to 5.19 US dollars (Davis et al., 2011). The 

average cost of any of the treatments listed amounted to more than 2 days wages according to the 

GNI data presented by World Bank (Papua, 2014), so for a family with several injections per 

year, malaria treatment is a major cost burden.  

 

Current ACT therapies are relatively expensive and the populations most affected by malaria 

outbreaks are in areas that make drug delivery difficult. Additionally, parasite resistance to ACT 

has spread and the effectiveness of ACTs are likely to decrease. These two factors contribute to 

the idea that the current approved treatment is not ideal, so low cost, highly effective treatment 

options need to be explored.  

 

1.3 Plant-Based Artemisinin Combination Therapy 

A. annua contains over 100 secondary metabolites, some of which have reported antimalarial, 

antibacterial, antiviral, anti-inflammatory, and cytokine-like activity (Table 1; Carbonara et al., 



16 
 

2012; de Magalhães et al., 2012). The plant is generally recognized as safe and has been 

consumed as a tea infusion for over 2,000 years (Duke, 2001). Oral consumption of dried A. 

annua leaves is also effective at reducing parasitemia in a rodent malaria model (Elfawal et al., 

2012). Based on prior research, plant-based Artemisinin Combination Therapy (pACT) treatment 

of malaria can be achieved with dried leaves of A. annua (Figure 6; Weathers et al., 2011). 

Accumulating evidence suggests that pACT may be a viable alternative to ACT in the treatment 

of malaria (Weathers et al., 2014a). 

 

Figure 6: Artemisia annua L. SAM cultivar vegetative form, and tablets from dried leaves. 

Much disputed is use of A. annua tea; mainly of its inconsistent artemisinin composition and 

possible under dosage of patients. Some clinical studies have shown that the use of A. annua tea 

alone often provides a significantly lower dosage of the drug, artemisinin, than is suggested for 

proper eradication of the parasite in a patient (Mueller et al., 2004; Rath et al., 2004; World 

Health Organization, 2012b). Although, Kenyan human trials showed that lower artemisinin 

concentration can be efficacious (ICIPE, 2005). Additional factors such as growth, harvesting, 

storage, and processing have been shown to decrease the amount of artemisinin recovery from 

the plant. The possibility of sub-therapeutic doses and resistance has deterred the WHO from 
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accepting alternative A. annua malarial treatment methods that otherwise have shown promising 

results (World Health Organization, 2012b).   

 

In a malaria infected mouse model, pACT effectively cleared parasitemia (Elfawal et al., 2012). 

The percent parasitemia in a murine model, infected with P. chabaudi, was measured post 

infection until 240-264 hours post-delivery of single oral dose treatments of varying levels of 

pure artemisinin or equal amounts of artemisinin delivered from A. annua whole plant leaves, 

dried and powdered. The data showed that the lower dose (24 mg/kg) of A. annua plant material 

eradicated the parasitemia in 88% of animals 30 hours post gavage. The higher dose (120 mg/kg) 

of pure artemisinin had similar parasite clearance to the lower dose of A. annua. Recrudescence 

was greatest in the low A. annua leaves dose than from either a high pure drug or A. annua dried 

leaf dose even though all had similar initial parasite clearance (Elfawal et al., 2012). These data 

implied that A. annua was just as effective as pure artemisinin at clearing malaria parasites in a 

murine model, but longer treatments are necessary to prevent recrudescence. 

Table 1: Various phytochemicals found in A. annua SAM. These phytochemicals 

inhibit 50% growth in chloroquine sensitive and resistant strains of P. falciparum parasites. 

Compound IC50 values (μM) Reference 

CQ sensitive CQ resistant 

Artemisininic compounds  

 Artemisinin 0.0226  ± 0.0007 .0212 ± 0023 

Suberu et al. (2013) 
 dihydroartemisinic acid 21.1 ± 0.7 17.7 ± 4.2  

 arteannuin B 3.2 ± 0.1 4.8 ± 0.4  

 artemisinic acid 77.8 ± 1.5 61.6 ± 7.5  

Monoterpenes  

 α-pinene 0.1 ND 
Weathers & Towler(2014) 

 eucalyptol (1,8 cineole ) 7.0 ND 

 camphor ND ND  

Phenols  

 chlorogenic acid 69.4 ± 6.4 61.4 ± 4.3 
Suberu et al. (2013) 

 rosmarinic acid 65.1 ± 5.0 65.0 ± 7.0  

Coumarins  

 scopoletin ND ND  

Flavonoids  

 chrysoplenol-D ND 32   

Liu et al (1992)  chrysoplenetin ND 23  

 eupatorin ND 65   

 artemetin ND 26   Liu et al (1992) 

 casticin 17.9 ± 4.7 12.2 ± 1.8  Suberu et al. (2013) 

 kaempferol 33 ± 7 25 ± 2  

Lahane & Saliba (2008) 
 luteolin 11 ± 1 12 ± 1  

 myricetin 40 ± 10 76 ± 23 

 quercetin 15 ± 5 14 ± 1  
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The therapeutic effects of A. annua compressed dried leaf tablets were tested in human malaria 

patients in Kenya (Table 2; ICIPE, 2005). The study used dried leaves containing 0.74% 

artemisinin. Each tablet contained 3.7 mg of artemisinin. Four different tablet doses were tested 

for 6 days in patients assumed to have P. falciparum. The highest A. annua dose (day 1 = 37 

mg/day artemisinin, days 2-6 = 29.6 mg/day artemisinin) cleared parasites in 90.9% of patients 

by day 28.  

 

In contrast, Giao et al. (2001) used a pure artemisinin treatment of 1,000 mg on the first day, and 

500 mg on days 2-7, and only 76% of patients had parasite clearance on day 28 (Table 2; Giao et 

al., 2001). This percent clearance with artemisinin was similar to that of the lowest dried leaf 

dose in ICIPE (2005), containing 14.8 mg of artemisinin on day 1 and 7.4 mg on each 

subsequent day. Even with 27 to 67 fold higher doses of artemisinin, the pure drug showed less 

effective parasite clearance than the compressed A. annua tablets (Table 2). 

 

In humans, Onimus et al. (2013) presented evidence that A. annua prevented malaria in post-

operative patients. In preparation for surgery, 14 asymptomatic pediatric patients infected with P. 

falciparum were given 2 capsules of A. annua leaf powder containing between 0.4 and 0.5 mg of 

artemisinin per capsule. The first and second days post-surgery, these patients were given 2 more 

capsules each day, and the third morning after surgery, patients were given 1 capsule. In 11 other 

patients, the capsules were administered only after surgery in the same manner. Both the 60 and 

36 hour treatments prevented the high temperature flare ups associated with malaria which were 

known to occur in asymptomatic patients during surgical recovery. The leaf powder also 

conveyed an added antinociceptive benefit.  

 

Comparisons in Table 2 support a similar antimalarial effect of pACT treatment with A. annua 

whole leaf compressed tablets and ACT with artemisinin derivatives. Parasitemia clearance was 

slightly higher in patients treated with the ACT than with pACT. However, the dose of the 

artemisinin derivative was much greater in the ACT than the artemisinin in pACT treatment. 

This suggests that a higher dose of the whole plant compressed tablet may be comparable to the 

WHO recommended treatment of ACT with artemisinin derivatives. In further support of this, 
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ICIPE (2005) found, by varying pACT doses, that the clearance of parasites with pACT may be 

correlated with the dose of plant material.   

 

Possibilities for increased antimalarial properties in pACT over ACT, as seen here, are currently 

being investigated. Weathers et al. (2011) measured artemisinin serum concentration in mice 

after oral gavage of powdered dried leaves from whole plant A. annua and showed that 

artemisinin was more effective at entering the serum than the pure drug alone. There was a 

greater than 40-fold increase of artemisinin (Weathers et al., 2011). More recently, Weathers et 

al. (2014a) showed that ingestion of plant material with artemisinin facilitated a higher 

artemisinin blood content (2.44 mg/L) than ingesting artemisinin alone (undetectable). A. annua 

artemisinin oral delivery doubled the blood serum level to 4.33 mg/L from that of artemisinin 

with vegetarian mouse chow, 2.44 mg/L. Those results suggested that the increased artemisinin 

Table 2: Plasmodium falciparum clearance with Artemisia annua, artemisinin, and 

various ACTs in human trials 

Malaria treatment  Artemisinin/derivative 

 dose (mg) 

 

Leaf dry weight 

 (g/day) 

# of 

subj. 

Total 

parasite 

clearance 

% (day) 

Reference 

Compressed whole 

leaf A. annua tablets 

Day 1 Day 2-6 Day 1 Day 2-6 

12 75(28) 

ICIPE (2005) 

  2 1 

  3 2 12 90.9(28) 

  4 3 12 83.3(28) 

  5 4 12 90.9(28) 

Pure artemisinin  Day 1 Days 2-7 

N/A 227 76(28) 

Giao et al. (2001) 

 500 

ACTs Standard WHO rec. N/A 2741 95(28) Zwang et al. (2009) 

Artesunate +   + 750 mefloquine N/A 51 97(28) Congpuong et al. 

(2010) 

Artesunate + 540 + 1350 amodiaquine  N/A 106 84(42) Hasugian et al. (2007) 

Dihydroartemisinin + 320 + 2430 piperaquine N/A 114 95.2(42) 
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serum concentration in mice given oral A. annua may be due to synergistic chemicals that occur 

naturally in the plant and inhibit degradation and/or aid in the transport of artemisinin throughout 

the process of digestion (Weathers et al., 2014a). Synergistic chemicals have the ability to inhibit 

or enhance the transport of other compounds, so it is a matter of discovering which compounds 

facilitate maximal artemisinin bioavailability (Adithan, 2005).   

 

1.4 Composition of Artemisia annua 

Within organisms, there are various primary and secondary metabolites (intermediates and 

products of metabolism) that result from various internal and external cues, and are necessary for 

isolating amino acids and acquiring vaccines and antibiotics (Boundless, 2014). Primary 

metabolites are vital to growth, development, reproduction, and regulation of normal body 

functions of a given organism. Examples of primary metabolites include carbohydrates, lipids, 

and proteins. Secondary metabolites are organic compounds found necessary for defense, 

immune response, and pigmentation (Boundless, 2014). Secondary metabolites are grouped 

based on chemical structure, composition, solubility, or biosynthetic pathway (Crozier et al., 

2006). The three main groups are terpenes, phenolics, and nitrogen-containing compounds 

(Crozier et al., 2006). Terpenes encompass monoterpenes, sesquiterpenes, diterpenes, 

triterpenoids, terpene polymers, and sterols. The class of phenolics includes phenolic acids, 

coumarins, lignans, flavonoids, tannins, and lignans (Humphrey & Beale, 2006). Alkaloids are 

common nitrogen-containing phenolic compounds.  

 

A. annua is a green, aromatic plant rich in terpenes, phenols, acetylenes, coumarins and 

flavonoids (Carbonara et al., 2012). The wild type plants generally grow 30-100 cm, but 

cultivated plants can be as tall as 2 m (Figure 7; World Health Organization, 2006).  The plant is 

ideal for drug production because A. annua has versatile growth requirements allowing for easy 

cultivation in many different types of environments including temperate, cool temperate, and 

subtropical regions (World Health Organization, 2006).  
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Figure 7: A young Artemisia annua plant viewed from the top. (taken in Mozambique by Ton 

Rulkens; Source: http://commons.wikimedia.org/wiki/File:Natural_anti-malarial_(4738072658).jpg) 

Also known as annual or sweet wormwood and qinghao, A. annua has been recently distributed 

worldwide and naturalized in many countries (Ferreira & Janick, 1995; Willcox et al., 2004). 

These regions extend into Europe and North America (Klayman, 1993). The Artemisia genus 

belongs to the Compositae or Asteraceae family. The growth cycle of A. annua is as follows: 

seedling, branching, flower-budding, fruiting, and senescence; the length of each phase is greatly 

affected by cultivation techniques and location (World Health Organization, 2006). The biomass 

of plant material will continue to increase until just before flower-budding, at which point 

biomass will decrease until senesced. The optimal growing temperature is 20-25ºC and 

distribution occurs in a wide range from hillsides, forests edges, and wastelands (World Health 

Organization, 2006). A. annua grows well in soil with 4.5-8.5 pH, proper drainage, and optimal 

nitrogen, phosphate, and potassium. The plant is quite adaptable to both drought and flooding. 

The range of artemisinin content varies greatly from plant to plant, with the highest amount of 

artemisinin at 1-2% of dry weight of leaves (World Health Organization, 2006). To yield optimal 

levels of artemisinin in the plant, weather conditions, cultivation methods, and harvesting 

techniques must be evaluated.  

 

Artemisinin is manufactured and stored in the glandular secretory trichomes present in A. annua 

(Duke et al., 1994). Concentrations of the antimalarial can vary depending on cultivar, growing 

conditions, and stage of development, but highest concentrations are just prior to flowering 

(Towler & Weathers, 2015; Ferraira & Janick, 1995). Glandular trichomes are located on various 

surfaces of plants, including A. annua, such as on the leaves, stems, and floral buds (Kelsey & 
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Shafizadeh, 1980; Slone & Kelsey, 1985; Ferreira & Janick, 1995). Artemisinin is not the only 

antimalarial compound present in A. annua (Table 1).  

 

Although concentrations of chemicals found in A. annua cultivars vary depending on 

geographical origin and growing conditions (Ćavar et al., 2011), the range of compounds in A. 

annua  includes at least 28 monoterpenes, 30 sesquiterpenes (including artemisinin), 12 

triterpeniods/steroids, 36 flavonoids, 7 coumarins, 4 aromatic, 9 aliphatic compounds (Bhakuni 

et al., 2002). The plant is also rich in phenolics, mainly caffeic acids, that have been found to 

have a role in enhancing artemisinin solubility and extraction efficiency when used in water, as 

well as suspected to participate in a wide range of medicinal remedies including hemorrhoids and 

fevers (Carbonara et al., 2012; de Magalhães et al., 2012). In a study involving plant composition 

analysis of extracts from dried leaves of A. annua cultivars Bra-BRA, Bra-L, and Lux-L, four 

phenolic compounds were detected after a water extraction: chlorogenic acid (Bra-BRA: 61 

µg/mL, Bra-L: 39 µg/mL, Lux-L: 34 µg/mL), isoquercetin (Bra-BRA: 2.5 µg/mL, Bra-L: 0.9 

µg/mL, Lux-L: 1.2 µg/mL), scopoletin (Bra-BRA: 24 µg/mL, Bra-L: 18 µg/mL, Lux-L: 7.6 

µg/mL), and rosmarinic acid (Bra-BRA: 566 µg/mL, Bra-L: 243 µg/mL, Lux-L: 73 µg/mL), 

where chlorogenic and rosmarinic acid (Figure 8) were found to be in the highest quantity (de 

Magalhães et al., 2012).  

 

   
Figure 8: Two phenolic acids present in A. annua  

Stressful environments, such as drought and pathogens, affect the production of phenolic 

compounds, so there could be significant variability in quantity among plants (de Magalhães et 

al., 2012). Weathers & Towler (2014) showed that the composition of plant material changes 

when dried and processed into tablets affecting the amount of phytochemicals present in the final 

product. The chlorogenic acid in fresh as well as dried plant material of A. annua SAM (both in 

the form of powder and tablets) revealed that chlorogenic acid was present in all forms of the 

Chlorogenic acid (A) Rosmarinic acid (B) 
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plant material, which indicates that if it assists transport, it would do so in all forms, at least in 

this cultivar (Weathers & Towler, 2014). When preparing dried compressed leaves into 

compressed tablets, chlorogenic acid initially comprised about 0.6% towards the dry weight of 

the mature leaves, lost about 90% of weight with drying, but nearly regains its original amount 

after the tablet is manufactured. Although the amount varied, chlorogenic acid measured in dried 

and fresh A. annua leaves was constant. In compressed dried leaf tablets there was about 5 mg/g 

dry weight (Weathers & Towler, 2014). 

 

Suberu et al. (2013) studied the antiplasmodial activity of various hot water extracts of A. annua 

on chloroquine resistant and sensitive strains of P. falciparum. Rosmarinic acid seemed to 

synergize with artemisinin at a ratio of 1:3 and to have an IC50 (the value at which 50% of the 

parasite viability is decreased) of approximately 65 μM (Table 1). This was the 2
nd

 and 3
rd

 

highest concentration of the phytochemicals present in the A. annua SAM cultivar, needed to 

inhibit growth of CQ resistant and sensitive P. falciparum, respectively (Table 1). Rosmarinic 

acid has low bioavailability as determined by low permeation rate (~0.2 µL/cm
2
 after 40 min.) 

and is not susceptible to hydrolysis by intestinal cells, implying that it can stay at relatively high 

concentration in its native form (Konishi & Kobayashi, 2005; de Magalhães et al., 2012).  

 

Chlorogenic acid, quinic acid (5-caffeoylquinic acid), is a phenolic compound that, when 

compared to other compounds, is found in relatively large quantities in A. annua (Rice-Evans et 

al., 1996). A relatively large portion of ingested chlorogenic acid (33%) was found to readily 

absorb into the bloodstream (Olthof et al., 2001). The amount that was not absorbed was found 

to be excreted mainly through the colon with less into the urine. Based on this information, it is 

likely that chlorogenic acid has biological effects throughout the body including high antioxidant 

properties (Olthof et al., 2001; Niggeweg et al., 2004). Chlorogenic acid has also been found to 

inhibit N-nitrosation reactions in vitro (Kono et al., 1995). Nitrosation refers to a reaction in 

which organic molecules are changed into compounds that are considered to be nitroso 

derivatives – a NO (nitroso) functional group attached to an organic group (Wang et al., 2002). 

These reactions typically produce mutations in tissue formation, resulting in cancerous cell 

accumulation. This research indicates that the presence of chlorogenic acid may also aid in the 

eradication of malaria, since it is found in A. annua. Whether this compound assists the transport 
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of artemisinin or enhances its antimalarial properties is still unknown. However, chlorogenic 

acid’s powerful nature indicates that it should be explored closely when examining the 

therapeutic potential of this plant.  

 

Rosmarinic acid has potent antioxidant activities and if present along with other compounds can 

account for the high antioxidant capacity of many plants (de Magalhães et al., 2012). Rosmarinic 

acid has inhibited liver damage from bacterial inflammation, inhibited nervous inflammation, 

and reduced oral inflammation (Qiang et al., 2011). Rosmarinic acid was only found in the 

budding stage of the A. annua SAM cultivar; it was not present in leaf powder or tablets which 

may indicate that it is burned off in the drying process (Weathers & Towler 2014).  

 

Flavonoids are phytochemicals that contain two aromatic rings linked with a 3-carbon bridge 

(Figure 9). They function to protect the plant against pathogens and regulate growth. In humans, 

these compounds have been studied for their anti-inflammatory, antiviral, antioxidant, antitumor 

and antimicrobial properties (Feng et al., 2012; Wu et al., 2010; Bitis et al., 2010; Chang-Wi & 

Cheng-Bin, 2014; Xiaowei & D’Souza, 2013). More than 40 flavonoids have been identified in 

A. annua (Table 2; Ferreira et al., 2010). Of these 40, casticin (Figure 9) and artemetin were 

shown to decrease the parasite transport mechanism in human and murine malaria (Elford et al., 

1987). Lehane & Saliba (2008) studied the antiplasmodial activity of 11 flavonoids found in 

various plants. Of these 11 flavonoids, kaempferol, myricetin, quercetin, and luteolin are also 

found in A. annua SAM (Figure 9; Towler & Weathers, 2015). Luteolin had an IC50 of 12 µM in 

chloroquine resistant P. falciparum (Table 1), which is a median concentration compared to the 

other phytochemicals present in A. annua SAM. Luteolin inhibits parasite growth by preventing 

the life cycle from being completed (Lehane & Saliba, 2008). The antimalarial mechanisms of 

kaempferol, myricetin, and quercetin have not been determined, but they do inhibit 50% of 

parasite growth at concentrations of 25 µM, 76 µM, and 14 µM, respectively, in chloroquine-

resistant strains. 
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  luteolin  myricetin quercetin 

 

 kaempferol casticin rutin 

Figure 9: Structures of several flavonoids found in A. annua 

Elford et al. (1987) used a chloroquine-resistant clone of late ring stage P. falciparum to study 

the antimalarial activity of artemisinin in combination with casticin. In concentrations greater 

than 10 µM, casticin alone had significant antimalarial activity. Artemisinin antimalarial activity 

was increased 3-5 fold when 5 µM of casticin was combined with artemisinin (Elford et al., 

1987). Because the concentration of casticin added to artemisinin was less than the IC50 for 

casticin, the increased antimalarial activity of artemisinin is most likely due to synergism with 

casticin, not an addictive effect of casticin’s antimalarial activity. 

 

Artemisinic acid and arteannuin B both have antibacterial and antifungal properties and may be 

found in higher concentrations in some cultivars A. annua than artemisinin. Also, essential oils 

from different plants are similar in composition and are reported to contain antiplasmodial 

activity (Milhau et al., 1997; Fujisaki et al., 2012). The principle constituents of plant essential 

oils are hydrophobic and include monoterpenes, some of which are present in A. annua (Boyom 

et al., 2003). The oxygenated monoterpene, camphor, found in A. annua, may comprise as much 

as 43.5% of the chemical content of the essential oil (Juteau et al., 2002). Additionally, Cherneva 
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et al. (2012) studied the effects of camphor on thymocyte cultured cells finding that camphor 

increased thymocyte viability at a concentration of 50 μg/mL. The thymus is partially 

responsible for malaria immunity through the production of T-cells (Roberts et al., 1977), so 

increased thymocyte viability by camphor could reduce recrudescence in A. annua treated 

individuals. Because this monoterpene may comprise a large proportion of the essential oil in A. 

annua, camphor indirectly may contribute to the antimalarial activity of the plant. If camphor has 

a high bioavailability, as determined in transport through intestinal epithelial cells, low 

recrudescence rates in whole leaf A. annua treatment of malaria may be explained (Figure 10). 

 

Figure 10: Structure of camphor 

 

1.5 Digestion and Drug Metabolism 

Artemisinin has low solubility in water and oil which requires oral or rectal administration 

(Golenser et al., 2006). Sometimes, oral administration becomes difficult for patients with severe 

malaria, requiring a water-soluble derivative (artesunate or artelinate) or an oil-soluble derivative 

(artemether and arteether) of artemisinin, often given through parenteral or intrarectal routes. 

Artemisinin bioavailability is thwarted by the metabolism of artemisinin in the human liver by 

the cytochrome P450 enzymes, CYP2C19, CYP3A4, and CYP2B6, where metabolism by 

CYP2B6 is most prevalent (Svensson & Ashton, 1999). This process is associated with first pass 

drug metabolism, and converts artemisinin into the secondary metabolites: deoxyartemisinin, 

deoxydihydroartemisinin, 9,10-dihydrodeoxyartemisinin, and crystal 7 (de Magalhães et al., 

2012; Carbonara et al., 2012; Lee & Hufford, 1990). This information is pertinent in accounting 

for total artemisinin metabolism in the body.   
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During digestion, maximum absorption takes place in the small intestine. The wall of the small 

intestine is comprised of a single layer of epithelial cells (enterocytes), and is responsible for 

monitoring and limiting the absorption of nutrients and drugs (Hubatsch et al., 2007). There are 

four modes of transport of compounds across enterocytes into serum. These include: passive 

transcellular, passive intracellular, carrier-mediated, and transcytosis (Figure 2; Artursson et al., 

1996). Passive transcellular transport is used by drugs that are hydrophilic and distribute readily 

into the cell membranes of the intestinal epithelium. Hydrophobic drugs have an incomplete and 

slow diffusion across intestinal epithelium, which necessitates passage through the water-filled 

pores of the passive intracellular transport (Artursson et al., 1996). When compounds mimic the 

structure of essential nutrients (e.g. amino acids, sugars, and peptides), the compound is actively 

transported using carrier-mediation by cellular carrier proteins (dipeptide carriers and P-

glycoprotein). An example of carrier-mediation would be the sodium potassium pump. 

Transcytosis is also an active transport mechanism that usually occurs via membrane vesicles 

with macromolecules, such as insulin and transferrin. 

 

In transport studies, an apparent permeability value (Papp) is often calculated in order to compare 

the results from different experiments. In 1996, Augustijns et al. conducted an experiment to 

measure the transport permeability of artemisinin, using a Caco-2 cell system, and obtained a 

Papp value of 30.4 X 10
6
 cm/s at 37ºC. When sodium azide was added, artemisinin transport was 

not affected indicating that the transport mechanism was likely not active transport, but instead 

probably passive transcellular transport. Passive transcellular transport is the most common drug 

permeation route in the intestine, so the mode of transport for artemisinin is easily modeled in 

Caco-2 cells. This drug transport makes sense because artemisinin is hydrophobic, which easily 

allows permeation through the lipid bilayer of intestinal epithelial cells. 

 

1.6 Caco-2 Model System for Transport Experiments  

The human epithelial colorectal adenocarcinoma (Caco-2) continuous cell line is a commonly-

used and FDA-approved immortalized cell model system employed to mimic the intestinal 

functions of the intestinal cells: absorption, metabolism, and bioavailability of nutrients and 

drugs (Hubatsch et al., 2007; Natoli et al., 2011). Caco-2 cells can differentiate spontaneously in 
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culture without the aid of differentiating factors, yet many functions of the small intestinal villi 

remain functional (Figure 11; Hubatsch et al., 2007). The intestinal properties of Caco-2 cells 

can vary, however, depending on the passage number, time in culture, origin of cell line, 

extracellular support, and cell culture media, so these variables should be minimized or 

otherwise controlled (Artursson et al., 1996). 

 
Figure 11: Transport mechanisms of Caco-2 cells 

Caco-2 cells are adherent cells that attach and grow on semi-permeable filters forming a 

confluent monolayer with tight junctions to facilitate transport, and are thus considered the gold 

standard for in vitro simulation of monolayers (Figure 11; Hubatsch et al., 2007; Natoli et al., 

2012). According to Artursson et al. (1996), Caco-2 cells are able to model all four types of 

transport across the intestinal epithelial layer making them a great choice for in vitro toxicology 

experiments (Figure 11). These cells also express most of the enzymes and carrier systems that 

intestinal mucosa have in vitro, including CYP3A4 (Augustijns et al., 1996). Therefore, they are 

ideal for studying small intestinal absorption. 

 

For use in transport studies, Caco-2 cells are seeded on to transwell permeable filter hanging well 

inserts placed into a well in a multi-well plate. After a proper growing period on the filters, 21-29 

days, the Caco-2 cells model the intestinal lumen with the apical side represented by the inner 

well and the basolateral side by the outer well (Figure 11; Hubatsch et al., 2007). In a transport 

study compounds of interest can be added to either the apical or basolateral side of the cells. 

Then the experiments are run for a designated amount of time during which the concentration of 

the compound is measured on both sides. By running transport experiments with this in vitro 

A B C D 

A – Passive 

transcellular transport 

B – Passive 

paracellular transport 

C – Active, carrier-

mediated pathway 

D – Transcytosis 

pathway 

Apical 

Basolateral 
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model system, the Papp can be determined and then compared to that of other molecules 

(Augustijns et al., 1996).  

 

 

1.7 Intestinal Transport of Flavonoids  

Quercetin, considered toxic in concentrations higher than 200–1200 mg, may be conjugated to 

glucuronides during intestinal absorption to assist in detoxification (Harwood et al., 2007; 

Murota & Terao, 2003). However, quercetin glucosides are not absorbed intestinally and are first 

hydrolyzed to quercetin (Walle et al, 2000). Lactate phlorizin hydrolase is a common membrane 

bound enzyme in the intestinal lumen which has been shown to hydrolyze quercetin glucosides 

(Day et al., 2000). The flavonoid, rutin, was one quercetin glucoside that was not hydrolyzed by 

lactate phlorizin hydrolase (Day et al., 2000). Furthermore, rutin absorption may be inhibited by 

the p-glycoprotein and multidrug resistant proteins localized in apical and basolateral membranes 

of the intestine, as well as in Caco-2 differentiated cultures (Zhang et al., 2013). These 

transmembrane proteins may be responsible for the excretion of rutin from the serum supported 

by higher basolateral to apical than apical to basolateral transport (Zhang et al., 2013). 

 

1.8 Intestinal Transport of Phenolic Acids  

Konishi & Kobayashi (2004) reported that monocarboxylic acid transporters are responsible for 

the transport of some phenolic acids across Caco-2 cells. Most orally consumed chlorogenic acid 

reaches the colon fully intact (Konishi & Kobayashi, 2004); in the colon it is hydrolyzed into 

caffeic acid. Konishi & Kobayashi (2004) studied the transport of chlorogenic and caffeic acid in 

Caco-2 cells, and found that chlorogenic acids exhibit non-saturable transport across a Caco-2 

cell monolayer through passive paracellular diffusion (Figure 11B). This suggested that once 

chlorogenic acid crosses the intestinal epithelial layer, it will not be transported back into the 

intestinal lumen. 

 

Chlorogenic acid has been shown to upregulate CYP34A activity depending on concentration.  

At the lowest concentration (0.1 µM), chlorogenic acid showed the greatest CYP34A induction; 
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at moderate concentrations (1, 2, 10 µM) the induction was decreased, and at the highest 

concentration (20 µM) CYP34A activity increased slightly (Li et al., 2010). Konishi & 

Kobayashi (2005) studied transepithelial transport of rosmarinic acid. Similar to chlorogenic 

acid, when the proton gradient was set so that the apical side had a pH of 6 and the basolateral 

side a pH of 7.4, the transport in either direction across the cells was similar. Unlike chlorogenic 

acid, when the proton gradient was removed, rosmarinic acid still exhibited similar transport in 

both directions, apical to basolateral and the reverse, basolateral to apical. Because the cell 

transport of rosmarinic acid decreased as the tightness of intercellular junctions increased, it was 

thought to permeate by paracellular pathways (Figure 11B), similar to chlorogenic acid (Konishi 

& Kobayashi, 2005). Studies performed by Qiang et al. (2011) concluded that rosmarinic acid is 

transported by both passive transcellular (Figure 11A) and paracellular routes (Figure 11B).  

 

Studying the role of phenolic acids in assisting artemisinin transport across the Caco-2 cell 

monolayer may provide insight into how these compounds function regarding artemisinin 

transport into the serum. Further experimentation with varying phenolic acid concentrations may 

yield different results, such that at one concentration artemisinin may be inhibited while at 

another it may be increased.  

 

 

1.9 Intestinal Transport of Monoterpenes 

Monoterpenes are organic compounds typically formed in plants (Hylemon & Harder, 1999). 

They can be toxic to cells of herbivores and serve as a defensive mechanism for the plant 

(Gershenzon & Croteau, 1992). This is often accomplished by the inhibition of digestive 

enzymes that prevent sufficient nutrient absorption, causing the animal to become weak and 

unable to properly function (DeGabriel et al., 2009). Additionally, monoterpenes have been 

found to inhibit acetylcholinesterase, which is involved in neurotransmission (Perry et al., 2000; 

Miyazawa et al., 1997). As a response, herbivores have developed their own defensive 

mechanisms to combat the harmful effects of monoterpenes and other plant secondary 

metabolites. Some of these mechanisms include stomach and intestinal pH regulation and the 

production of surfactants that prevent interactions between these metabolites and digestive 
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enzymes (Berenbaum, 1980; Martin & Martin, 1984). However, there is also research that 

suggests that >95% of consumed monoterpenes are absorbed through the wall of the intestines 

and therefore do not interact at all with these enzymes (Boyle et al., 1999; Foley et al., 1987; 

Sorensen et al., 2004; Shipley et al., 2012).  

In a study by Kohl et al. (2015), the intestinal contents of Greater Sage-Grouse (avian 

herbivores) and chickens were examined for remains of monoterpenes and their effects on the 

inhibition of various digestive enzymes. Monoterpenes, including borneol, 1,8-cineole, and 

camphor, were found responsible for inhibiting the digestive enzymes of both species of birds. 

Specifically, the digestive enzyme, aminopeptidase-N (APN), was found to be inhibited by the 

presence of monoterpenes. APN is an important enzyme because it allows absorption of nutrients 

by cleaving the terminal amino acids that are attached to proteins during digestion (Sjöström et 

al., 2002). Contrary to this finding however, the monoterpene, β-pinene, increased digestive 

enzyme activity in chickens (Kohl et al., 2015).  The larger implications of this study suggest 

that the presence of specific monoterpenes may inhibit or enhance the ability of proteins to be 

digested by birds (Kohl et al., 2015). Additionally, this research brings to question the effects 

that the presence of monoterpenes could have on intestinal transport of artemisinin using the 

Caco-2 model. 
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2.0 Aims and Hypotheses  

Based on the evidence that orally consumed dried A. annua leaves were therapeutically 

successful in humans and animal models, our primary aim was to determine how many of the 

major phytochemicals in A. annua assisted in antimalarial activity by increasing the 

bioavailability of artemisinin, the primary plant antimalarial. We hypothesized that when rutin 

and quercetin were used in the transportation experiments, the results achieved would be the 

same as the previous MQP group’s results with increased artemisinin transport. For the transport 

experiments with chlorogenic acid and rosmarinic acid, we hypothesized that the bioavailability 

of artemisinin would be increased. For the concentration series experiment with chlorogenic 

acid, we predicted that an increased amount of chlorogenic acid would increase the 

bioavailability of artemisinin. 

 

Our major goals included: 

1. Demonstrating reproducibility of the previous Caco-2 study that measured artemisinin 

permeability with or without quercetin or rutin. 

2. Calculating the Papp of artemisinin with or without rosmarinic and chlorogenic acid. 

3. Measuring the effect of varying concentrations of chlorogenic acid on artemisinin 

transport. 

4. Calculating the Papp of artemisinin with or without camphor.  

5. Measuring the effect of varying concentrations of camphor on artemisinin transport.  
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3.0 Methods  

These methods were adapted from Natoli et al. (2012), Hubatsch et al. (2007), and developed 

also from an earlier study by Harten, et al. (2014). The drug transport study procedure has been 

adapted from Augustijns, et al. (1996) and Hubatsch, et al. (2007).  

 

 

3.1 Materials 

Caco-2 cultured cells were obtained from the American Type Culture Collection (passage 

number 18-49; Manassas, VA). Fetal Bovine Serum (FBS; cat #: S162H) was purchased from 

Biowest (Nuaillé, France). Hank’s Balanced Salt Solution (HBSS; cat #: 14175-079), 

penicillin/streptomycin, and Dulbecco’s Modified Eagle’s Medium (DMEM + GlutaMAX, 4.5 

g/L Glucose, 110 mg/L Sodium Pyruvate; cat #: 10569-010) were all obtained from Gibco. The 

12-well plates were purchased from Corning (Corning, NY; cat #: 3512), and transwell inserts 

with 0.4 μm polycarbonate membranes were purchased from Greiner Bio-One (Monroe, NC; cat 

#: 665640). TrypLE (cat #: 12604-021) and trypan blue were obtained from Gibco (Grand Island, 

NY).  

 

 

3.2 Caco-2 Cell Culture 

Stock Caco-2 cells were grown in medium (containing 79% DMEM + GlutaMAX, 1% 

penicillin/streptomycin, and 20% FBS) up to 90% confluence at 37 ˚C in 5% CO2. Medium was 

changed every 2 days for 3-5 passages. Cells were passaged at 50-90% confluence, ideal to 

minimize passages and cell line mutation. Passaging occurred 2-5 days after plating cells at an 

average known density of 2 X 10
6
 per T75 (75mm

2
) flask. Cells were split by treatment with 

4mL of an HBSS wash (~1 minute at room temperature in the cell culture hood) and 4mL of 

TrypLE (15 minutes at 37 ˚C in 5% CO2). All cells used for transport experiments were between 

9 and 50 passages and were >95% viable as determined through a 1:1 (0.05 mL cell suspension, 

0.05 mL trypan blue) trypan blue cell count, in which blue cells were dead. Cells were seeded at 
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a density of 1 X 10
5
/cm

2
 in each of 12 transwell filters (diameter of 13.85 mm

2
), and maintained 

by standard Caco-2 cell culture techniques, changing media every 1-2 days (Hubatsch et al., 

2007).  

 

 

3.3 Measuring Transepithelial Electrical Resistance 

Caco-2 cells were grown on transwell inserts (0.4 μm pore size, Greiner Bio-One, Monroe, NC) 

for TEER measurement and transport experiments. Cells were seeded at a density of 1 X 10
5
/cm

2
 

and became confluent after about 21-29 days post inoculation. At about 21-29 days, cells formed 

tight junctions and differentiated into functional villi. Media were changed every 2 days. An 

EVOM
2
 TEER probe (Worlds Precision Instruments, Sarasota, FL) was used according to the 

manufacturer's instructions to measure the tight junction integrity of the monolayer. A TEER 

>250 cm
2
 indicated that cell monolayers were ready for transport experiments (Equation 1). 

 

Equation 1: Transepithelial Electrical Resistance 

  

, , and 

. 

 

 

3.4 Transport Donor Solutions 

Two phenolic acids, rosmarinic acid ( 98%; Sigma Aldrich, cat#: R4033) and chlorogenic acid 

( 95%; Sigma Aldrich, cat#: C3878) were investigated, as well as two flavonoids, quercetin 

( 95%; Sigma Aldrich, cat#: 1001419342) and rutin, and monoterpene camphor ( 98%; Sigma 

Aldrich, cat#: 1001150215) to determine their effects on the bioavailability of artemisinin 

( 98%; Sigma Aldrich, cat#: 1001496854) as it crosses the intestinal epithelium. Tables 3-6 

display the concentrations that were used to create the donor solutions for all transport studies. 

These tables show the moles (μmol) molarity (μM) and mass (μg) added to each hanging well in 

the transwell plate. Molar ratios were chosen based on the relative concentrations found in the 
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SAM cultivar of A. annua (Table 3-6; Table A1, Appendix A). Volumes and artemisinin 

concentration were based on the information provided in the previous Caco-2 MQP from 2014 to 

enable experimental comparison. Papps for artemisinin were calculated and compared once a line 

graph of concentration over time was plotted after the experimental results were received 

(Equation 2; Sample Calculation 1). 

 

Equation 2: Papp Calculation. Where ΔQ is the cumulative change in µg of artemisinin from apical to 

basolateral side of monolayer, Δt is the change in time in seconds, C0 is the initial concentration of artemisinin 

(µg/mL) in the donor solution, and A is surface area of the monolayer (cm
2
). 

 

 
 

Sample Calculation 1: Calculation of Papp with the artemisinin sample 1 at 60 minutes as an 

example. The Papp is a measurement of rate of transport which takes into account culture growth surface area as 

well as the initial concentration of artemisinin. The units are cm/s because mL of water converts to cm
3
which 

cancels out the cm
2
, and the µg from initial concentration and the measured cumulative artemisinin at 60 minutes 

also cancel. Given that the transfer solution is mostly water, the units of Papp are cm/s. 
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Table 4: Experiment 2 Reagent amounts for AN ± chlorogenic acid (CA) and rosmarinic acid (RA) per transwell 

Reagent AN alone AN + CA 1:1.1 AN + RA 1:1.1 AN + (CA & RA) 1:1.1 

µL stock
 

μmol µg µM µL stock
 

μmol µg µM µL stock
 

μmol µg µM µL stock
 

μmol µg µM 

AN 12.5
 

0.089 25 177 12.5
 

0.089 25 177 12.5
 

0.089 25 177 12.5
 

0.089 25 177 

CA - - - - 12.5
 

0.098 34.7 196 - - - - 6.25
 

0.049 17.4 98 

RA - - - - - - - - 12.5
 

0.099 35.7 198 6.25
 

0.049 17.8 99 

EtOH (70%) 12.5 - - - - - - - - - - - - - - - 

HBSS 475 - - - 475 - - - 475 - - - 475 - - - 

Basolateral side always contained 1.5 mL HBSS. AN stock solution = 7.08 mM, CA stock solution = 7.84 mM, RA stock solution = 7.92 mM 

Table 5: Experiment 3 Reagent amounts for AN ± CA concentration series per transwell 

Reagent AN alone AN + CA 1:1 AN + CA 2:1 AN + CA 3:1 

µL stock
 

μmol µg µM µL stock
 

μmol µg µM µL stock
 

μmol µg µM µL stock
 

μmol µg µM 

AN 12.5
 

0.089 24.7 175 12.5
 

0.089 24.7 175 12.5
 

0.089 24.7 175 12.5
 

0.089 24.7 175 

CA - - - - 12.5
 

0.098 31 175 6.25 0.049 15.5 87.5 4.2 0.033 10.3 58.3 

EtOH (70%) 12.5 - - - - - - - 6.25 - - - 8.30 - - - 

HBSS 475 - - - 475 - - - 475 - - - 475 - - - 

Basolateral side always contained 1.5 mL HBSS. AN stock solution = 7.0 mM, CA stock solution = 7.0 mM 

Table 6: Experiment 4 Reagent amounts for AN ± camphor (C) per transwell in concentration series 

Reagent AN alone AN + C 1:1 AN + C 2:1 AN + C 10:1 

µL stock
 

μmol µg µM µL stock
 

μmol µg µM µL stock
 

μmol µg µM µL stock
 

μmol µg µM 

AN 12.5
 

0.089 25 177 12.5
 

0.089 25 177 12.5
 

0.089 25 177 12.5
 

0.089 25 177 

C - - - - 12.5
 

0.088
 

13.32 177 6.25 0.044 6.66 88.5 1.26
 

0.009 1.35 17.7 

EtOH (70%) 12.5 - - - - - - - 6.25 - - - 11.24 - - - 

HBSS 475 - - - 475 - - - 475 - - - 475 - - - 

Total volume in apical was 0.5 mL Basolateral side always contained 1.5 mL HBSS. AN stock solution = 7.0 mM, C stock solution = 7.0 mM 

Table 3: Experiment 1 Reagent amounts for artemisinin (AN) ± quercetin (Q) and rutin (R) per transwell 

Reagent AN alone AN + Q 2:1 AN + R 2:1 

µL stock
 

μmol µg µM µL stock
 

μmol µg µM µL stock
 

μmol µg µM 

AN 12.5
 

0.089 25 177 12.5
 

0.089 25 177 12.5
 

0.089 25 177 

Q - - - - 12.5
 

0.049 15 99 - - - - 

R - - - - - - - - 12.5
 

0.049 30.1 98 

EtOH (70%) 12.5 - - - - - - - - - - - 

HBSS 475 - - - 475 - - - 475 - - - 

Basolateral side always contained 1.5 mL HBSS. AN stock solution = 7.08 mM, Q stock solution = 3.97 mM, R stock solution = 3.95 mM 
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3.5 Transepithelial Transport Experiments and Extractions 

To measure the change in transport of artemisinin (apical to basolateral), a 1.5 mL solution of 

HBSS was added into the well of a 12-well transwell plate (basolateral side), and 0.5 mL of 

solution containing the appropriate phytochemical(s) was added into the transwell insert (apical 

side) (see Tables 3-6 for appropriate chemical concentrations added to each well for each 

experiment). The 12-well  plate was incubated at 37C for a total of 60 minutes; at every 15 

minutes, the transwell inserts were transferred to a new well plate containing 1.5 mL HBSS [in 

basolateral compartment] in each well to maintain sink conditions. All basolateral solutions 

remaining in the wells were immediately extracted with equal parts methylene chloride. 

Remaining apical solutions were extracted only after the completion of the 60 minute transport 

experiment. To determine artemisinin content within the cell layer, the monolayer was 

trypsinized, incubated (30-60 min. at 37C), and then scraped off of the inserts and extracted. 

These solutions were dried with N2 and stored at 4°C until further analysis. 

 

 

3.6 Analysis of Artemisinin and Deoxyartemisinin 

After the transport experiment was complete and all apical and basolateral solutions were 

extracted, samples were prepared for measurement of artemisinin and deoxyartemisinin by gas 

chromatography/mass spectrometry (GC/MS). Prior to analysis, the samples were thawed from 

the freezer and resuspended in a known volume (100-200 µL) of methylene chloride. This 

quantity was then transferred to each GC/MS vial. Each sample was then air dried using a small 

hand dryer. Immediately before GC/MS analysis, each sample was re-suspended in 50 µL of 

pentane and placed into the GC/MS for analysis. An Agilent Technologies GC/MS was used for 

this experiment. Conditions of the GC/MS were as follows: GC, Agilent 7890B; MS, Agilent 

5977A; column Agilent HP-5MS (30 m X 0.25 mm X 0.25 μm); carrier gas, Heat 1 mL/min; 

injection volume, 1 μL in splitless mode; ion source temperature, 280
o
C; inlet, 150

o
C; oven 

temperature, 125
o
C help for 1 min and then increased to 300

o
C at 5

o
C/min (Towler & Weathers, 

2015).  

 



38 
 

To compare the bioavailability of artemisinin from the transport studies, the concentration values 

calculated from the GC/MS chromatograms were compiled into a histogram showing the average 

basolateral concentrations over 15 minute time periods. An ANOVA (0.05 = Statistical 

significance) was used to compare the statistical significance between the concentrations of 

artemisinin in the basolateral layer among the artemisinin samples and combination 

artemisinin/phytochemical samples. This allowed for us to determine whether the tested 

compounds significantly contributed to the transport of artemisinin across the Caco-2 cells. 

Averaged artemisinin amounts were displayed for each time point, as well as initial and final 

apical amounts and cellular amounts. The data from each 15 minute interval were summed and 

compiled into a line graph of artemisinin accumulation over time on the basolateral side of the 

well. Slopes were calculated and artemisinin concentrations statistically compared.  

 

 

3.7 Statistical Methods 

To bring quantitative significance to the data, a statistical analysis must was performed. All 

conditions were replicated at least three times per experiment, data averaged, and means tested 

for standard deviation as well as significance using ANOVA and Tukey-Kramer test as well as a 

paired student’s t-test for unequal variances when warranted.  
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4.0 Results 

Artemisinin, synthesized and stored within the glandular trichomes of Artemisia annua, is 

recognized as a prominent and potent antimalarial treatment that in murine studies showed that 

ingestion of dried A. annua leaves yielded higher levels of artemisinin in the bloodstream than 

the pure drug. The exact cause of this difference is unknown, but it is speculated that other 

compounds within the plant are leading to the increased bioavailability of artemisinin. The goal 

of this project was to investigate specific compounds found in the plant that may enhance 

artemisinin bioavailability. These compounds were: two flavonoids, quercetin and rutin; two 

phenolic acids, chlorogenic and rosmarinic acids; and the monoterpene, camphor. Using the 

intestinal Caco-2 cell model, drug transport studies were conducted across the monolayer from 

apical to basolateral side.  

 

 

4.1 Transepithelial Electrical Resistance Validation of Caco-2 

Monolayer Integrity 

Prior to beginning a transport study, the presence and integrity of the monolayer’s tight junctions 

in each well was tested using transepithelial electrical resistance (TEER). The TEER value of a 

transwell insert, without cells, was recorded to be 94 Ω. By subtracting 94 Ω from the TEER 

value (obtained per well) and multiplying that value by the area of the filter, the actual resistance 

of the Caco-2 monolayer was calculated. Crucially, the resistance values must be 250 Ω·cm
2
 or 

greater, which is necessary for proper assessment of permeability (Appendix C: 1-4). All 

subsequent transport data are calculated using wells where the TEER value was 250 Ω·cm
2
 or 

greater; any below 250 Ω·cm
2
 were discarded. TEER was measured immediately following the 

extractions to control for damages to the monolayer caused by exposure to ethanol or orbital 

shaker (Appendix C: 1-4). In most cases, there was a slight decrease in TEER from the before 

and after recordings, but in some cases there was an increase. The differences may have been 

attributed to uneven monolayers or an un-calibrated TEER instrument. 
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4.2 Effect of Flavonoids  

The quercetin and rutin transport experiments with artemisinin conducted in early 2014 were 

replicated in this project to determine experimental reproducibility. The transport solutions were 

selected such that the concentration of compound per transwell (µM) was two parts artemisinin 

and one part either quercetin or rutin. Artemisinin stock was 7.08 mM, with 8.86 X 10
-2

 µmol of 

artemisinin (25 µg) in each well. The quercetin stock was 3.97 mM with 4.9 X 10
-2

 µmol (15 µg) 

in each well, while the rutin stock was 3.95 mM with 4.9 X 10
-2

 µmol (30.1 µg) in each well. 

Additionally, the experimental procedure was modified from last year’s group in that the Caco-2 

cells were lysed and extracted for any retained artemisinin following the 60 minute transport. 

Figure 12 displays the average basolateral concentrations of artemisinin for each experimental 

condition at every time point. In addition, after the 60 minute transport study, artemisinin from 

the apical side was extracted and an average of 1.99 µg across all treatments was measured. 

Content of artemisinin remaining in the cells was also measured after the transport experiment 

and a mean of 0.13 µg was obtained across all treatments.  

 
Figure 12: Average basolateral concentration of artemisinin over 60 minutes ± quercetin or 

rutin. The AN (artemisinin alone) treatment was not significantly different from either the AN + Q (artemisinin 

and quercetin) or AN + R (artemisinin and rutin) treatments (Table 5, Appendix C). Insignificant error bars in donor 

solution are due to one measurement. All other conditions have a 4 well replication. Sum refers to the total AN 

collected from 15-60 min as well as end point analysis of apical donor well (apical post) and cells (cells post). 
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Artemisinin transport was greatest after each of the first two 15 min transfers, declining by about 

50% after the fourth transfer at 60 min (Figure 12). After 60 min the apical donor wells had 

about 12-25% of the original amount of donor well artemisinin. Extracted cells (cells post in 

Figure 12) had barely detectable amounts of artemisinin. When the cumulative amount of 

artemisinin transported was measured, it appeared that quercetin increased the transport of 

artemisinin, while rutin had no effect (Figure 13).  However, the standard error was large in the 

artemisinin control as well as for artemisinin and rutin, suggesting that the values were not 

significantly different (Figure 13). Unfortunately, the initial artemisinin amounts added to the 

apical donor wells prior to the transport study were not equal (Figure 12), so comparisons 

between treatments is not possible. There was no significant artemisinin found in the Caco-2 

cells at the end of the transport study demonstrating that they did not retain nor bind significant 

amounts of the drug (Figure 12). 

 

 

Figure 13: Cumulative artemisinin concentration at 15-minute time points for quercetin 

and rutin transport study. AN concentration is represented as a percentage of AN present in donor solution, 

added at time zero. Although the treatment of AN+Q has tight error bars (standard error) both one-way ANOVA and 

Student t-test with unequal variances show no statistical difference in the means of this treatment and AN control at 

the 60 minute completion (Table 5, Appendix C). 

 



42 
 

4.3 Effect of Phenolic Acids  

Rosmarinic and chlorogenic acids were chosen as the second set of experimental 

phytochemicals. These phenolic acids have similar structures, and are both secondary 

metabolites typically found in A. annua with rosmarinic and chlorogenic acids of particular 

interest. A 1:1.1 molar ratio of phenolic acid to artemisinin was used for this experiment (Table 

4). Artemisinin content in apical sides of each well was theoretically 0.089 µmoles (25 μg), and 

phenolic acid content was 0.098 µmoles (~35 μg) per well (Table 4). Four treatments were 

compared: artemisinin alone (control), artemisinin and chlorogenic acid, artemisinin and 

rosmarinic acid, and artemisinin, chlorogenic acid, and rosmarinic acid. Artemisinin transport 

was greatest after the first 15 min of the transport experiment, declining by ~75% at 60 min 

(Figure 14).  

 
Figure 14: Average basolateral concentration of artemisinin when combined with phenolic 

acids over 60 minutes. Artemisinin alone (AN), artemisinin with chlorogenic acid (AN + CA), artemisinin 

with rosmarinic acid (AN + RA), and artemisinin with both chlorogenic and rosmarinic acid (AN + CA + RA) 

showed little difference in artemisinin transport in each time period (Table 6, Appendix C). Error bars represent the 

standard error of the mean. All means were taken from 3 well replicates except donor solutions in which only 1 

aliquot was taken. Sum refers to the total AN collected from 15-60 min as well as end point analysis of apical donor 

well (apical post) and cells (cells post) samples. 

 

In all treatments, the cumulative amount of artemisinin transported across the membrane 

increased with each 15 minute interval (Figure 15). Although Figure 15 shows almost 25% 

greater artemisinin transport with both phenolic acids than with either one alone, this transport is 

displayed as a percentage of the artemisinin measured in the donor solution. The total amount of 
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artemisinin transported, with artemisinin alone or combined with either phenolic acid averaged 

between 9.5-10 μg/mL. However, when artemisinin was combined with both phenolic acids, the 

total artemisinin amount was only about 7.5 μg/mL. Unfortunately donor solutions differed in 

artemisinin concentration between theoretical (25μg) and measured amounts of artemisinin in the 

control and that in both phenolic acid treatments (Figure 14). Therefore, the only two conditions 

that could be compared were artemisinin with chlorogenic acid, and artemisinin with rosmarinic 

acid which began with approximately 24.5 μg of artemisinin.  

 
Figure 15: Percentage of artemisinin transport across Caco-2 cells when adding 

chlorogenic and rosmarinic acid. Cumulative artemisinin (AN) concentration at 15-minute time points for 

AN + chlorogenic acid (CA) and AN + rosmarinic acid (RA) transport studies are represented by a percentage of the 

donor solution added at time zero to the apical side of cells due to differences in measured artemisinin in donor 

solutions (Figure 6, Appendix C).   

 

The standard error for these values indicated that at 60 min the transport of artemisinin was not 

significantly different across conditions (Figure 15). Differences in proportion and amount of 

artemisinin transported in the combined phenolic acid treatment may be due to inconsistent 

artemisinin concentration in donor solutions (Figure 14 and 15; Table 6, Appendix C). 
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4.3.1 Chlorogenic Acid Concentration Series 

Results thus far suggested that chlorogenic acid, at a molar ratio of artemisinin:chlorogenic acid 

of 1:1.1 did not enhance artemisinin transport (Figures 14 and 15). To determine if alteration of 

that ratio affected artemisinin transport, a concentration series was tested with 

artemisinin:chlorogenic acid ratios of 1:0, 1:1, 2:1, and 3:1. Although after 15 min it appeared 

that the 2:1 ratio enhanced artemisinin transport, results at 60 min were not statistically 

significant and dropped to about half measured at the earlier time points (Figure 16). Cumulative 

artemisinin transport showed a similar, but also insignificant result (Figure 17). 

Figure 16: Average basolateral concentration of artemisinin over 60 minutes with varying 

concentration treatments with chlorogenic acid.  The AN (artemisinin alone) treatment was not 

significantly different from any of the CA (chlorogenic acid) concentration treatments (Table 7, Appendix C). All 

conditions have a 3 well replication. Sum refers to the total AN collected from 15-60 min as well as apical post 

samples. The cells were not lysed in this experiment nor those that followed due to minute artemisinin content found 

in the cells from the previous experiments. 

 

Despite all donor well solutions supposedly having an artemisinin concentration of 25 µg/well 

(Figure 16), donor well artemisinin concentrations were again measured lower, at 6-10 µg/well. 

The treatments with similar artemisinin donor solutions, artemisinin alone and artemisinin with 

chlorogenic acid at a 1:1 concentration, as well as artemisinin with chlorogenic acid at 2:1 and 

3:1 concentrations, can be compared pairwise but not with the others. Some of the artemisinin 

was unaccounted for as shown by the much lower sum data for the 1:0 and 1:1 ratios (Figure 16).  
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Figure 17: Percentage of artemisinin transport across Caco-2 cells when adding varying 

chlorogenic acid concentrations. Cumulative AN concentration at 15-minute time points for AN + CA 

transport study is represented by a percentage of the donor solution added at time zero to the apical side of cells due 

to differences in measured artemisinin in donor solutions (Figure 7, Appendix C). 

 

4.4 Effect of Monoterpenes 

Because of camphor abundance in A. annua, a concentration series was performed to determine 

if this phytochemical increased transport of artemisinin. To accomplish this, a concentration 

series was conducted with artemisinin and camphor at 1:0, 1:1, 2:1, and 10:1 

artemisinin:camphor molar ratios with the 10:1 correlating with the measured in dried A. annua 

leaf tablets. The amount of artemisinin collected for all samples at each time points is illustrated 

in Figure 18.  
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Figure 18: Average basolateral concentration of artemisinin over 60 minutes with varying 

concentration treatments with camphor.  The AN (artemisinin alone) treatment was significantly 

different for the 2:1 C (camphor) concentration treatment at 45 minutes (Table 8, Appendix C). All conditions have 

a 3 well replication. Sum refers to the total AN collected from 15-60 min as well as apical post samples. 

The donor well solutions varied from 12.5 to 20 µg of starting artemisinin, clearly different again 

from the theoretical starting amount of 25 µg. The amount of artemisinin collected at each 15 

min interval was about 2-4 µg (Figure 18). The 1:1 artemisinin to camphor concentration and 

10:1 concentration showed elevated amounts of artemisinin on the apical side post transport 

experiment; this ultimately resulted in a greater amount of summed artemisinin than the 

measured amount originally put into the wells (Figure 18).  The artemisinin and camphor ratio of 

10:1 showed the greatest amount of artemisinin transport with about 80% crossing form the 

apical to basal side after 60 minutes (Figure 19), which was the only statistically significant 

result.  
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 Figure 19: Percentage of artemisinin transport across Caco-2 cells when adding varying 

camphor concentrations. Cumulative AN concentration at 15-minute time points for AN + C transport study 

is represented by a percentage of the donor solution added at time zero to the apical side of cells due to differences 

in measured artemisinin in donor solutions (Figure 8, Appendix C). 

 

4.5 Apparent permeability value  

In transport studies, Papp is commonly calculated to account for differences in donor well 

concentration, cell growth area, and experiment duration. Papp was calculated using the average 

cumulative artemisinin at 60 minutes from all replicate transport experiments.  Except for one 

condition within the camphor experiment, the average Papp from each condition in each 

experiment was not statistically significant from its respective artemisinin control (Figures 20-

23). The 10:1 artemisinin to camphor treatment yielded significant differences, and showed an 

increase compared to the control (Figure 23). 
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Treatment Papp St. error 

AN 6.62x10
-5

 1.2x10
-5

 

AN+Q 2:1 8.61x10
-5

 3.52x10
-6

 

AN+R 2:1 5.67x10
-5

 9.04x10
-6

 

 

Figure 20: Apparent permeability value 

(Papp) of flavonoid treatments. Error bars 

represent standard error for all means presented. 

Flavonoids tested, quercetin (Q) and rutin (R) 

were replicated 3 times for a total of 4 wells. All 

molar ratios were 2 parts AN to 1 part flavonoid. 

Note that AN donor solutions contained 9 µg, 

AN+Q 11 µg, and the AN+R treatment contained 

14 µg AN. 

 
 

Treatment Papp St. error 

AN 5.77x10
-5

 3.94x10
-6

 

AN+CA 1:1 5.11x10
-5

 5.87x10
-6

 

AN+RA 1:1 4.76x10
-5

 1.66x10
-6

 

AN+(CA+RA) 1:1 6.79x10
-5

 8.53x10
-6

 

 

Figure 21: Apparent permeability 

value (Papp) of artemisinin in phenolic 

acid treatments. Error bars represent standard 

error for all means presented. Phenolic acids 

tested, chlorogenic acid (CA) and rosmarinic acid 

(RA) were replicated twice for a total of 3 wells. 

All molar ratios were 1 part AN to 1 part phenolic 

acid. Note that AN donor solutions contained 21 

µg, AN+CA and AN+RA contained ~24.5, & 

AN+CA+RA treatment contained 14 µg AN. 
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Treatment Papp St. error 

AN 5.44x10
-5

 7.13x10
-6

 

AN+CA 1:1 4.93x10
-5

 1.72x10
-5

 

AN+CA 2:1 8.55x10
-5

 1.91x10
-5

 

AN+CA 3:1 6.72x10
-5

 8.33x10
-6

 

 

Figure 22: Apparent permeability value 

(Papp) of artemisinin in the chlorogenic 

acid concentration series. Error bars 

represent standard error for all means presented. 

Chlorogenic acid (CA) concentrations were tested 

with 2 replicates for a total of 3 wells for each 

treatment. Molar ratios are denoted. Note that AN 

concentration remained the same, and CA 

concentration was altered accordingly in each 

treatment. Note that AN & 1:1 donor solutions 

contained 8 µg AN and 2:1 & 3:1 treatments 

contained 6 µg AN in their donor solutions. 

 

 
 

Treatment Papp St. error 

AN 7.72x10
-5

 5.03x10
-6

 

AN+C 1:1 7.94x10
-5

 9.56x10
-7

 

AN+C 2:1 6.38x10
-5

 7.32x10
-6

 

AN+C 10:1 1.02x10
-4

 8.6x10
-6

 

Figure 23: Apparent permeability value 

(Papp) of artemisinin in the camphor 

concentration series. Error bars represent 

standard error for all means presented. Camphor 

(C) treatments were tested with 2 replicates for a 

total of 3 wells per treatment. Molar ratios of AN 

to C are denoted, but note that the concentration of 

AN remained the same while C was altered 

accordingly. *, statistical significance at p ≤ 0.05 

when compared to AN alone (t-Test: Paired Two 

Sample for Means). Note that the AN and 10:1 

donor solutions contained ~13µg of AN, 1:1 and 

2:1 donor solutions contained ~20 µg of AN. 
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4.6 Analysis of Artemisinin Donor Well Solutions  

Some confusion arose as to the artemisinin differences between the applied and measured levels 

in donor wells for each treatment (Tables 3-6; Figures 12, 14, 16, 18). The same volume of 

artemisinin stock solution was added to each well in each experiment (12.5μL), but the measured 

artemisinin concentrations in donor solutions were all different. Consequently, comparisons 

could only be made between those treatments having the same starting artemisinin concentration. 

While this made it invalid to compare Papp across all conditions, it did permit us to compare the 

effect of artemisinin concentration in the donor well with artemisinin Papp per se. To determine if 

the Papp was dependent on artemisinin content in the donor well, each Papp for artemisinin 

treatments was plotted against the amount of artemisinin actually measured in the donor well 

(Figure 24). Intermediate amounts of artemisinin resulted in the highest rate of artemisinin 

transport. A lower Papp was seen at both the high and low artemisinin donor well concentrations. 

To our knowledge, this comparison had not yet been studied.  

Figure 24: Papp with varied artemisinin in donor well. From each transport experiment, the AN in 

donor solutions varied. To determine the role of AN on rate of transport, all control (AN only) Papps were plotted. 

The polynomial curve fit the points best with a low R
2
 of 0.2655. 
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5.0 Discussion 

The overarching goal of this project was to understand how the ingestion of dried leaves of A. 

annua (pACT) allows for a greater bioavailability of artemisinin than just the drug alone. 

Elfawal et al. (2012) showed that a single dose dried whole plant A. annua (24mg/kg) cleared 

parasitemia in 88% of the animals used. A later pharmacokinetic study showed that even plant 

material used in rodent chow increased artemisinin movement into the serum. Those studies 

suggested that something about the presence of artemisinin in plants allowed for a larger parasite 

clearance in the murine model. Therefore, it was proposed that other phytochemicals that are 

present in A. annua may facilitate the transport of artemisinin across the intestinal barrier, thus 

allowing for a greater amount of the drug to be present in the blood and available to combat 

malaria parasites.  

 

To test whether artemisinin transport changed with the addition of phytochemicals from A. 

annua, an intestinal Caco-2 model system was used to measure the transport of artemisinin. The 

model system was influenced by an artemisinin transport study performed by Augustijns et al. 

(1996) among other transport studies. In the 60 minute control transport study (artemisinin 

alone), a Papp of artemisinin was expected to be similar to 30.4 X 10
-6

 cm/s at 37
o
C, as measured 

by Augustijns et al. (1996). Although the culture growth cross-sectional area in this experiment 

was smaller, 1.22 cm
2
, than the 4.67 cm

2
 in the study by Augustijns et al. (1996), Papp 

standardizes for culture growth area and allows comparison between the results of both studies. 

The actual permeability of artemisinin in each treatment in our study is considered “high” (Papp > 

20 X 10
-6

 cm/s) for Papp values (Cerep, 2013). Previously Harten et al. (2014) showed a more 

modest permeability (Papp = 2 X 10
-6

 cm/s to 20 X 10
-6

 cm/s) for artemisinin alone, compared to 

our study which showed high permeability for all conditions (Figures 20-24).  

 

Additionally, the differences in artemisinin transport rate may be due to differences in 

artemisinin donor solution concentration. In plotting all control Papps, in which varied 

concentrations of artemisinin was added to the apical side, a parabolic trend showed that rate of 

transport is dependent on artemisinin in donor solutions. Intermediate amounts of artemisinin (14 
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µg) gave the greatest Papps when both higher (21 µg) and lower (8-9 µg) amounts resulted in 

lower transport. Augustijns et al. (1996) studied the transport of artemisinin at 100 µM donor 

concentrations which, based on the curve in Figure C 1, should have given a high Papp of 

approximately 8.0 X 10
-5

 (derived from the equation of the curve: -1 X 10
-8

(100 µM)
2
 + 2 X 10

-

6
(100 µM) – 2 X 10

-5
). However, Caco-2 cells are heterogeneous and may evolve due to 

selective pressures in culture resulting in experimental differences between transport studies 

(Vachon & Beaulieu, 1992). In addition, artemisinin detection techniques varied between the two 

studies. Augustijns et al. (1996) used HPLC and our study used GC/MS. Based on the conflicting 

findings, more research should cover the effect of artemisinin donor solution concentration on 

the transport of artemisinin. 

 

The purpose of repeating the flavonoid quercetin and rutin study conducted by Harten et al. 

(2014) was to verify reproducibility of those results Reproducibility is important in making 

comparisons between different studies that use cells at different passages. Unfortunately, there 

was no true statistical difference between the treatments. This may be due to a small replication 

of 4 wells. To truly see a significant difference the flavonoid treatments would have to be 

replicated across multiple plates with a large number of wells to compare.  This is because the 

difference between treatments can be small relative to the variation within treatments 

(McDonald, 2014). With that in mind, the increase of artemisinin transport in the artemisinin and 

quercetin treatment may be significantly different from the control with multiple replications. 

This conflicts with the results of Harten et al. (2014) where the artemisinin and rutin treatment 

showed the greater increase in artemisinin transport. However, Harten et al. (2014) only 

performed each treatment on 2 wells with the control in only 1 well. High standard error in the 

artemisinin control for the flavonoid experiment (std. error = 0.18-0.56) could have resulted in a 

low statistical significance (p=0.110) in the mean difference between the quercetin/artemisinin 

treatment and the artemisinin control. 

 

Rosmarinic and chlorogenic acids were chosen due to their structural similarities, role in immune 

response, and abundance in many A. annua cultivars (Boundless, 2014; de Magalhães et al., 

2012). Other Caco-2 intestinal transport studies showed these phenolic acids possessed 

IC50 values about 65 µmol/L, significantly thwarted activity of the CYP3A4 P450 cytochromes, 
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and greatly reduced inflammation via limiting IL-6 and IL-8 cytokine secretions (Svensson & 

Ashton, 1999; de Magalhães et al., 2012). Figures 14 and 15 showed that the highest proportion 

of artemisinin was transported when the drug was combined with both rosmarinic and 

chlorogenic acid, although there was no statistically significant differences. Greater artemisinin 

transport occurred when the two phenolic acids were combined together with artemisinin than 

with either single phenolic acid. The lowest amounts of artemisinin transported resulted from 

transport with chlorogenic acid and rosmarinic acid individually.  This differed from Suberu et 

al. (2013) findings, where rosmarinic acid exemplified a synergistic relationship with artemisinin 

(1:3 parts artemisinin to rosmarinic acid) in chloroquine sensitive Plasmodium strains. Although 

instead using a breast cancer cell line to test the toxicity of artemisinin, Suberu et al. (2014) 

determined that there may actually be a decreased artemisinin potency with increased 

chlorogenic acid concentrations. Additionally, rosmarinic and chlorogenic acid use passive 

transport just as artemisinin, perhaps the phenolic acids are competing with artemisinin for the 

same passage routes through the tight junctions (Konishi & Kobayashi, 2004; Konishi & 

Kobayashi, 2005). Indeed Suberu et al. (2014) showed there was a concentration effect on 

therapeutic response when artemisinin was combined with some of the individual 

phytochemicals found in A. annua. 

 

The treatment that combined artemisinin with both chlorogenic acid and rosmarinic acid showed 

an increase of artemisinin transport compared to artemisinin alone. However, when each 

chemical was combined individually with artemisinin, a lower percentage was transported across 

the membrane. These results suggested that a combination of phytochemicals may be more 

effective than any single phytochemical, as proposed by the study that demonstrated effective 

parasite clearance when using pACT in a murine model (Elfawal et al., 2012). Also, the fact that 

rutin, chlorogenic acid, and rosmarinic acid transported a lower percentage of artemisinin, than 

just artemisinin alone, suggested that some phytochemicals may have an inhibiting effect on the 

drug. Conducting further transport studies and replication of all thirteen phytochemicals would 

allow for further characterization of those that promote transport and those that inhibit it. 

 

A camphor concentration series was also performed because this monoterpene is often abundant 

in the essential oil of A. annua (Juteau et al., 2002). Camphor also affects thymocyte viability 
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(Cherneva et al. 2012). Three different ratios of artemisinin to camphor were tested (1:1, 2:1, and 

10:1). Because of variability in donor solution artemisinin concentration, the artemisinin 

treatment can only be compared with the 10:1 treatment of artemisinin to camphor. Additionally, 

the 2:1 ratio can only be compared with the 1:1 ratio of artemisinin to camphor. The results of 

this experiment showed that an increase in the percentage of transported artemisinin occurred 

with the 10:1 ratio (artemisinin:camphor)  compared to artemisinin alone. The Papp values for all 

camphor transports also showed a high level of permeability, and the 10:1 artemisinin to 

camphor treatment significantly (p=0.024) increased the artemisinin Papp compared with the 

artemisinin control. 

 

Camphor, borneol, and 1,8-cineole (or eucalyptol) were found to inhibit the digestive enzyme, 

aminopeptidase-N, when consumed by both sage-grouse and chickens (Kohl et al., 2015). The 

sage-grouse used in that study was known to primarily consume sagebrush, which is a common 

name for many plants in the Artemisia genus. Therefore, the contents of their digestive system 

contained plant material that was most likely of this genus, although not likely to include A. 

annua. However, many of the monoterpenes present in the digested material of the birds were 

the same or similar to those present in the A. annua cultivar used in this study. Although Kohl et 

al. (2015) primarily focused on the activity of the bird’s digestive enzymes, when taken together 

with the results of this study, it appeared that camphor had both inhibitory and enhancing effects 

with respect to digestion and absorption. Furthermore, β-pinene increased digestive activity in 

chickens without showing this same effect in sage-grouse (Kohl et al., 2015). Although both are 

avian species, their digestive systems are different enough that β-pinene did not have the same 

effect in both. Thus it is possible that in different digestive systems, camphor interacts differently 

with the enzymes that are present. Human intestinal cells are different than avian intestinal cells, 

which could explain the difference in the effect of camphor.  Indeed, other phytochemicals may 

show similar variations and may show an increase or decrease in digestive activity and transport, 

depending on the enzymes and makeup of the organism’s digestive system and body.  

 

Elfawal et al. (2012) showed that parasite clearance in mice diminished significantly with one 

dose, thus leading to the conclusion that a larger amount of artemisinin was transported across 

the epithelial membrane (Elfawal et al., 2012). However, the amount of artemisinin present in the 
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bloodstream was unknown. It was not until a later pharmacokinetic study that the artemisinin 

concentration was quantified in healthy and Plasmodium chabaudi-infected mice after a 100 mg 

kg
-1

 dose of artemisinin given orally from either a pure drug or pACT treatment (Weathers et al. 

2014). The results showed that when accompanied by plant material, more artemisinin passed 

into the serum, with as much as 6.6 mg/L of artemisinin found in the infected mice. Therefore, 

there is still the possibility that other phytochemicals in A. annua, such as camphor, have 

antimalarial properties or that the plant matrix itself aided in the eradication of the parasite in 

these murine models. If this prospect were to be considered, individually testing phytochemicals 

that showed antimalarial capability in murine models, could be one way to obtain evidence to 

why artemisinin oral consumption via pACT eradicated malarial parasites more effectively than 

pure artemisinin. 

 

Of all the phytochemicals tested, only camphor at a molar ratio of 10:1 [artemisinin:camphor] 

showed a significant increase in artemisinin transport, which was indicative of an increase in 

artemisinin in the serum. More artemisinin in the serum could aid in parasite clearance, as 

demonstrated in pACT parasite clearance in the study by Elfawal et al. (2012). This study 

therefore, may suggest that certain phytochemicals in A. annua facilitate the transport of 

artemisinin, but only at specific ratios relative to artemisinin.  

 

Information regarding the transport of artemisinin in combination with phytochemicals found in 

A.annua is important in understanding the mechanism by which artemisinin serum concentration 

is increased after pACT treatment, relative to pure artemisinin. Our data show that quercetin, 

rutin, chlorogenic acid, and rosmarinic acid, did not significantly alter artemisinin serum 

concentration. However, the rate of transport was increased significantly by camphor at a 10:1 

molar concentration [artemisinin:camphor] possibly allowing a faster in vivo absorption, and 

with multiple doses of pACT, a higher overall concentration of artemisinin in the blood. Since 

the majority of artemisinin is degraded and eliminated through the liver, the activity of the 

enzymes responsible, e.g.  CYP2B6 and CYP3A4 (Niu et al., 1985; Svensson & Ashton, 1999), 

should be measured in response to various concentrations of different A. annua phytochemicals. 

As previously mentioned, phenolic acids may inhibit such enzymes, so this research would 

solidify previous findings (Suberu et al. 2014). Also, because artemisinin has been found to 
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break down into four metabolites (deoxy-dihydroartemisinin, dihydroxyartemisinin, 

deoxyartemisinin, and crystal-7), it is possible that other metabolites still remain unknown (Lee 

& Hufford, 1990). Understanding how artemisinin is degraded by the body could give further 

insight about why consumption of whole plant A. annua clears parasitemia more effectively than 

artemisinin alone. 
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6.0 Conclusions and Future work 

First and foremost, the artemisinin transport experiments of this study collectively focused on 

only five of the thirteen major phytochemicals that have been measured in the A. annua SAM 

cultivar. The goal was to determine if one specific phytochemical was responsible for a 

noticeable increase in artemisinin. Our concentration studies revealed that artemisinin transport 

was affected, not only by certain phytochemicals, but also by the amount of phytochemical 

relative to artemisinin. Camphor was shown to significantly increase artemisinin transport at a 

molar ratio of 10:1 [artemisinin:camphor]. To determine if any other phytochemicals are indeed 

responsible for the increased bioavailability of artemisinin, all of the measured and as of yet 

unmeasured phytochemicals should be tested using the same transport study, but also at various 

molar ratios to artemisinin. Because there are multiple phytochemicals in A. annua, a 

combination effect on artemisinin transport could also be occurring during treatment. If any 

combination experiments were conducted, it would make sense to test combinations of the 

phytochemicals that showed the most promising results when individually combined with 

artemisinin. An alternative option would be to chemically block various chemistries of A. annua 

plant material, such as proteins, to gain insight on the deleterious effects in transport of 

artemisinin. 

 

The culmination of our camphor (monoterpene) results, as well as data collected indicative of 

increased digestive enzyme activity in chickens as a result of the present of β-pinene, should also 

be considered when continuing with artemisinin transport studies (Kohl et al., 2015). Pinene is a 

monoterpene that has two isomers, α and β (Simonsen, 1957). Although, β-pinene is not found in 

A. annua, its isomer, α-pinene, is present (Weathers & Towler 2014). Since β-pinene showed 

promising results for increased enzymatic activity in chickens, it is recommended that α-pinene 

be tested in combination with artemisinin to see if an increase in bioavailability results. 

Artemisinin concentration should also be explored as a determinant of optimal transport. Based 

on our results, Papp appears to have a parabolic trend with artemisinin concentration in the donor 

well suggesting that there may an optimum concentration of artemisinin for optimal transport. 
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Thus, a more extensive artemisinin concentration series should be tested to determine if indeed 

there is an optimum artemisinin concentration for the donor well. 
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8.0 Appendices  

Appendix A: Additional Introductory and Background Material 

Table A 1: Key A. annua compounds from SAM leaves harvest (Weathers & Towler, 2014) 
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Table A 2: Molecular weight and MSDS links for compounds used in transport 

experiments 

Compound MW 

(g/mol) 

MSDS from Sigma-Aldrich 

Artemisinin 282.33 http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=U

S&language=en&productNumber=361593&brand=SIGMA&PageToGoToURL

=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsigma

%2F361593%3Flang%3Den  

 

Quercetin 302.24 http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=U

S&language=en&productNumber=Q4951&brand=SIGMA&PageToGoToURL

=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsigma

%2Fq4951%3Flang%3Den  

 

Rutin 610.52 http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=U

S&language=en&productNumber=R5143&brand=SIGMA&PageToGoToURL

=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsigma

%2Fr5143%3Flang%3Den  

 

Chlorogenic  

Acid 

354.31 http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=U

S&language=en&productNumber=C3878&brand=ALDRICH&PageToGoToU

RL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldri

ch%2Fc3878%3Flang%3Den  

 

Rosmarinic  

Acid 

360.31 http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=U

S&language=en&productNumber=536954&brand=ALDRICH&PageToGoToU

RL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldri

ch%2F536954%3Flang%3Den  

 

Camphor 152.23 http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=U

S&language=en&productNumber=148075&brand=ALDRICH&PageToGoToU

RL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldri

ch%2F148075%3Flang%3Den 

 

 

http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=361593&brand=SIGMA&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsigma%2F361593%3Flang%3Den
http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=361593&brand=SIGMA&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsigma%2F361593%3Flang%3Den
http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=361593&brand=SIGMA&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsigma%2F361593%3Flang%3Den
http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=361593&brand=SIGMA&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsigma%2F361593%3Flang%3Den
http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=Q4951&brand=SIGMA&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsigma%2Fq4951%3Flang%3Den
http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=Q4951&brand=SIGMA&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsigma%2Fq4951%3Flang%3Den
http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=Q4951&brand=SIGMA&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsigma%2Fq4951%3Flang%3Den
http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=Q4951&brand=SIGMA&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsigma%2Fq4951%3Flang%3Den
http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=R5143&brand=SIGMA&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsigma%2Fr5143%3Flang%3Den
http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=R5143&brand=SIGMA&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsigma%2Fr5143%3Flang%3Den
http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=R5143&brand=SIGMA&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsigma%2Fr5143%3Flang%3Den
http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=R5143&brand=SIGMA&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsigma%2Fr5143%3Flang%3Den
http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=C3878&brand=ALDRICH&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2Fc3878%3Flang%3Den
http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=C3878&brand=ALDRICH&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2Fc3878%3Flang%3Den
http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=C3878&brand=ALDRICH&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2Fc3878%3Flang%3Den
http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=C3878&brand=ALDRICH&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2Fc3878%3Flang%3Den
http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=536954&brand=ALDRICH&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2F536954%3Flang%3Den
http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=536954&brand=ALDRICH&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2F536954%3Flang%3Den
http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=536954&brand=ALDRICH&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2F536954%3Flang%3Den
http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=536954&brand=ALDRICH&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2F536954%3Flang%3Den
http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=148075&brand=ALDRICH&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2F148075%3Flang%3Den
http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=148075&brand=ALDRICH&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2F148075%3Flang%3Den
http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=148075&brand=ALDRICH&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2F148075%3Flang%3Den
http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=148075&brand=ALDRICH&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2F148075%3Flang%3Den
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Appendix B: Methods 

Standard Operating Procedure for Caco-2 Transwell Plate 

This SOP was adapted from the Determination of drug permeability and prediction of drug 

absorption in Caco-2 monolayers available from Hubatsch et al. (2007) and Thawing, 

Propagating, and Cryopreserving Protocol from the American Type Culture Collection (2012). 

Caco-2 cells work well in absorption systems because, when fully confluent, they have the 

ability to form tight junctions. The following steps are used to prepare a transwell transport plate 

by seeding the appropriate concentration of Caco-2 cells.  

A. Maintaining stock cells  

1. Place complete media in 37°C water bath until warm 

2. Remove T75 flask of stock cells from 37°C incubator  

3. Aspirate media from flask 

4. Add 12 mL of warmed, complete media into the flask  

B. Seeding cells on transwell inserts 

1. Obtain T75 flask of stock cells when ~90% confluent and aspirate media 

2. Remove any remaining media by washing flask with 3-5 mL of HBSS; then aspirate 

3. Add 3-5 mL of Tryp-LE  to flask and incubate at 37°C for 15-30 minutes, or until the cell 

layer dissociates from the flask bottom 

4. Immediately stop trypsinization by adding 8-10 mL of complete media to flask  

5. Transfer the suspension to a 15 mL conical tube and centrifuge on 1,500 rpms for 3 

minutes 

6. Aspirate off media until just above the cell pellet and resuspend in 2 mL of new media 

7. Perform a cell and viability count (must be at least 95% viable) using hemacytometer 

8. Calculate volume of cell suspension and complete media needed to obtain a concentration 

of 6.0 * 10
5
 cells/mL and mix together 

a. Example: You do a cell count and find you have 7.0 x 10
5
 cells/mL, in a total of 2 

mL of suspension.  You want to seed 3 wells (0.5 mL/well), but calculate for 4 

wells to account for mistakes (2 mL). The final cell concentration you are aiming 
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for is 6.0 x 10
5
 cells/mL.  This way you will have 3 x 10

5
 cells in each well (the 

density called for in the Nature Methods paper).  Given the equation, C1V1=C2V2:  

(7.0 x 10
5
 cells/mL)(V1) = (6.0 x 10

5
 cells/mL)(2 mL).   V1 = 0.58 mL, so you 

need 0.58 mL of cell suspension and 1.42 mL of media to make 2 mL of cell 

suspension at a concentration of 6.0 x 10
5
 cells/mL for seeding. 

9. Place transwell filter inserts into wells of 24-well plate 

10. Wet each filter with 0.1 mL of complete media for ~2 minutes 

11. Pipette 0.5 mL of cell suspension in each well, such that there is 300,000 cells/well. 

* Be sure to appropriately resuspend cells in medium by pipetting media against the 

bottom surface of the tube – visually check tube to ensure no cells are still attached. Try 

to   

12. Fill each basolateral compartment with 1.5 mL of complete media  

13. Cover and incubate for 6-16 hours (no longer) 

C. Maintaining cells on transwell filter inserts 

1. After 6-10 hours post seeding, aspirate basolateral media (lower chamber) 

2. Aspirate media from apical media (upper chamber) 

3. Replace apical side with 0.5 mL of complete media and then basolateral side with 1.5 mL 

of complete media  

* Important this is done to remove dead cells, debris, and aggregates that may cause 

multilayered growth  

4. Change media every 2-3 days by aspirating basolateral then apical; then adding 0.5 and 

1.5 mL of complete media to apical then basolateral side 

5. Repeat Step 4, until cells ready for transport experiment, 21-29 days   
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Standard Operation Procedure for Transport Experiment 

This SOP was modified from the Determination of drug permeability and prediction of drug 

absorption in Caco-2 monolayers, available from Hubatsch et al., (2007). To complete all parts 

of the transport experiment and GC/MS preparation, it takes about 6 hours.   

A. Final Caco-2 monolayer preparation 

1. 12-24 hours before the experiment, change the culture medium  

* No longer than this period to avoid adaption into a more starved phenotype  

2. Aspirate basolateral then apical side  

3. Add 0.5 and 1.5 mL of complete to apical then basolateral side 

4. Prior to beginning transport, wash the transwell filters by transferring monolayers into 

new 12-well plate containing 1.5 mL of HBSS in the basolateral compartments and 

carefully transfer 0.5 mL of HBSS into the apical sides 

5. Cover and incubate transwell plate under gentle shaking for 15-20 min at 37°C 

6. Set aside until needed for transport 

B. TEER Protocol  

1. Place the transwell inserts in new 12-well plate containing 1.5 mL of HBSS in the 

basolateral compartments and carefully transfer 0.5 mL of HBSS into the apical sides 

2. Place TEER meter probe into each well: short probe in apical side and long probe in the 

basolateralside  

3. Record reading in (ohms)  

4. Separately, record reading of transwell insert without cells, for use in calculating TEER 

value   

C. Apical-to-basolateral transport experiment 

1. Remove washing solution from transwell plate by decanting and transfer inserts into new 

12-well plate with 1.5 mL of HBSS in the basolateral compartment  
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2. Add 0.5 mL of donor solution to the corresponding apical compartment (t=0), as well as 

put 0.5 mL aside in a vial  

3. Cover plate and incubate at 37°C on an orbital shaker at 300-400 r.p.m. to minimize the 

effects of unstirred water 

4. After 15 min remove plate from incubator and transfer the transwell inserts into new 12-

well plate with 1.5 mL of HBSS in the basolateral compartment to maintain sink 

conditions  

5. Return covered plate to incubator at 37°C on an orbital shaker at 300-400 r.p.m 

6. Use Pasteur pipet to transfer contents of basolateral compartment into a vial 

7. Repeat Steps 4-6 every 15 min until 60 min time point is reached  

8. At 60 min, use Pasteur pipet to transfer contents of apical compartment into a vial, as 

well as transfer contents of the basolateral compartment into a separate vial 

D. Lysing Cells 

1. After measuring the TEER value, add 0.25 mL of Tryp-LE to the apical compartment and 

cover 

2. Incubate the plate at 37°C on an orbital shaker at 300-400 r.p.m. for 15-30 min or until 

cell layer becomes dissociated from the filter 

3. Remove from incubator  

4. Add 0.25 mL of HBSS to apical side and 1 mL to basolateral side  

5. Use Pasteur pipet to transfer contents of apical and basolateral into the same vial 

E. Extraction of artemisinin 

1. To each vial add equal parts methylene chloride and vortex sample 

2. Cover with Dura Seal and sonicate in a sonicating water bath for 30 min 

3. Pipette the methylene chloride and artemisinin layer (bottom layer) into a new vial  

4. Nitrogen dry samples to remove any HBSS 

5. Resuspend samples in 100-200 µL of methylene chloride and transfer contents into 

GC/MS tube 

6. Resuspend sample in 50 µL of pentane prior to insertion into GC/MS 
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Appendix C: Supplemental Results, Figures and Tables 

Table C 1: TEER values for Caco-2 monolayers prior and after quercetin and rutin 

transport experiment 

 Prior to Tranport Experiment  After Transport Experiment  

Sample R (Ω)
1
 R – Rb (Ω)

2
 TEER value

 

(Ω*cm
2
)

 3
 

R (Ω)  R – Rb (Ω) TEER value 

(Ω*cm
2
) 

AN1
 

477 383 428.96 252 158 176.96 

AN2 511 417 467.04 500 406 454.72 

AN3 470 376 421.12 435 341 381.92 

AN4 475 381 426.72 477 383 428.96 

AN+Q1
 

506 412 461.44 556 462 517.44 

AN+Q2 513 419 469.28 526 432 483.84 

AN+Q3 511 417 467.04 505 411 460.32 

AN+Q4 508 414 463.68 541 447 500.64 

AN+R1
 

478 384 430.08 518 424 474.88 

AN+R2 491 397 444.64 400 306 342.72 

AN+R3 472 378 423.36 330 236 264.32 

AN+R4 483 389 435.68 363 269 301.28 
1 R is the raw voltage value of the sample obtained from the TEER instrument 
2 Rb is the raw voltage value of the transwell insert without any cells [obtained from the TEER instrument] 
3 TEER value = (R-Rb) * A , where A is the area of the filter  

 

Table C 2: TEER values for Caco-2 monolayers prior to chlorogenic and rosmarinic acid 

transport experiment 

 Prior to Tranport Experiment  

Sample R (Ω)
1
 R – Rb (Ω)

2
 TEER value

 

(Ω*cm
2
)

 3
 

AN1
 

482 388 434.56 

AN2 471 377 422.24 

AN3 502 408 456.96 

AN+CA1 489 395 442.4 

AN+CA2
 

490 396 443.52 

AN+CA3 499 405 453.6 

AN+RA1 492 398 445.76 

AN+RA2 470 376 421.12 

AN+RA3
 

505 411 460.32 

AN+CA+RA1 478 384 430.08 

AN+CA+RA2 454 360 403.2 

AN+CA+RA3 492 398 445.76 
1 R is the raw voltage value of the sample obtained from the TEER instrument 
2 Rb is the raw voltage value of the transwell insert without any cells [obtained from the TEER 

instrument] 
3 TEER value = (R-Rb) * A , where A is the area of the filter 

*Note that TEER was not taken after this experiment. 
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Table C 3: TEER values for Caco-2 monolayers prior to chlorogenic acid concentration 

series transport experiment 

 Prior to Transport Experiment  

Sample R (Ω)
1
 R – Rb (Ω)

2
 TEER value

 

(Ω*cm
2
)

 3
 

AN1
 

337 243 272.16 

AN2 344 250 280 

AN3 373 279 312.48 

AN1:CA1-1 348 254 284.48 

AN1:CA1-2
 

356 262 293.44 

AN1:CA1-3 364 270 302.4 

AN2:CA1-1 374 280 313.6 

AN2:CA1-2 359 265 296.8 

AN2:CA1-3
 

347 253 283.36 

AN3:CA1-1 330 236 264.32 

AN3:CA1-2 342 248 277.76 

AN3:CA1-3 367 273 305.76 
1 R is the raw voltage value of the sample obtained from the TEER instrument 
2 Rb is the raw voltage value of the transwell insert without any cells [obtained from the TEER 

instrument] 
3 TEER value = (R-Rb) * A , where A is the area of the filter 

*Note that TEER was not taken after this experiment. 

 

Table C 4: TEER values for Caco-2 monolayers prior to camphor concentration series 

transport experiment 

 Prior to Transport Experiment  After Transport Experiment  

Sample R (Ω)
1
 R – Rb (Ω)

2
 TEER value

 

(Ω*cm
2
)

 3
 

R (Ω)  R – Rb (Ω) TEER value 

(Ω*cm
2
) 

AN1
 

348 254 284.48 322 228 255.36 

AN2 353 259 290.08 290 196 219.52 

AN3 362 268 300.16 320 226 253.12 

AN1:C1-1 340 246 275.52 328 234 262.08 

AN1:C1-2
 

355 261 292.32 375 281 314.72 

AN1:C1-3 309 215 240.8 300 206 230.72 

AN1:C0.05-1 361 267 299.04 314 220 246.4 

AN1:C0.05-2 348 254 284.48 338 244 273.28 

AN1:C0.05-3
 

359 265 296.8 335 241 269.92 

AN1:C0.01-1 324 230 257.6 330 236 264.32 

AN1:C0.01-2 335 241 269.92 322 228 255.36 

AN1:C0.01-3 349 255 285.6 331 237 265.44 
1 R is the raw voltage value of the sample obtained from the TEER instrument 
2 Rb is the raw voltage value of the transwell insert without any cells [obtained from the TEER instrument] 
3 TEER value = (R-Rb) * A , where A is the area of the filter  
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Table C 5: Artemisinin content (µg) per well from quercetin and rutin experiment 

AN content per sample (µg) 

Sample Row A Row B Row C Row D Ave. STD. STD. Error 

AN  

 Donor Solution 8.92 8.92 8.92 8.92 8.92 0.00 0.00 

 15 min 1.23 1.16 1.81 2.33 1.63 0.55 0.27 

 30 min 1.02 1.84 3.27 0.82 1.74 1.11 0.56 

 45 min 0.56 0.82 1.26 0.32 0.74 0.40 0.20 

 60 min 0.90 0.60 0.95 0.17 0.66 0.36 0.18 

 Apical post 1.67 1.76 4.77 0.38 2.15 1.86 0.93 

 Cells post 0.40 0.08 0.11 0.03 0.16 0.17 0.08 

 Total collected 5.78 6.26 12.17 4.05 7.07 3.53 1.77 

AN+Q 

 Donor Solution 10.94 10.94 10.94 10.94 10.94 0.00 0.00 

 15 min 2.35 2.88 2.91 3.30 2.86 0.39 0.20 

 30 min 1.58 2.44 2.98 2.63 2.41 0.60 0.30 

 45 min 1.66 1.52 1.25 1.41 1.46 0.17 0.09 

 60 min 1.14 0.75 0.97 0.61 0.87 0.24 0.12 

 Apical post 1.76 2.18 2.14 1.98 2.01 0.19 0.09 

 Cells post 0.12 0.09 0.46 0.18 0.21 0.17 0.08 

 Total collected 8.60 9.85 10.70 10.11 9.82 0.88 0.44 

AN+R 

 Donor Solution 14.59 14.59 14.59 14.59 14.59 0.00 0.00 

 15 min 1.64 1.80 2.54 3.33 2.33 0.77 0.39 

 30 min 1.59 1.73 2.27 3.36 2.24 0.81 0.40 

 45 min 1.07 1.00 0.81 2.31 1.30 0.68 0.34 

 60 min 0.92 0.85 0.71 0.78 0.82 0.09 0.05 

 Apical post 1.98 1.41 1.80 2.01 1.80 0.28 0.14 

 Cells post 0.10 0.06 0.06 0.11 0.08 0.03 0.01 

 Total collected 7.30 6.84 8.19 11.90 8.56 2.30 1.15 
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Table C 6: Artemisinin content (µg) per well from chlorogenic and rosmarinic acid 

experiment 

AN content per sample (µg) 

Sample Row A Row B Row C Ave. STD. STD. Error 

AN 

 Donor Solution 21.31 21.31 21.31 21.31 0.00 0.00 

 15 min 6.82 4.65 4.80 5.42 1.21 0.70 

 30 min 1.64 2.25 1.76 1.88 0.32 0.18 

 45 min 1.60 0.98 1.12 1.23 0.33 0.19 

 60 min 1.19 1.47 1.45 1.37 0.16 0.09 

 Apical post 3.18 2.62 3.18 2.99 0.32 0.19 

 Cells post 0.07 0.06 0.07 0.06 0.01 0.00 

 Total collected 14.50 12.01 12.37 12.96 1.35 0.78 

AN+CA 

 Donor Solution 24.31 24.31 24.31 24.31 0.00 0.00 

 15 min 7.02 5.17 3.82 5.34 1.61 0.93 

 30 min 1.77 1.98 1.42 1.72 0.28 0.16 

 45 min 2.02 0.76 2.04 1.61 0.74 0.43 

 60 min 1.48 1.13 1.42 1.34 0.19 0.11 

 Apical post 3.17 1.76 2.41 2.45 0.71 0.41 

 Cells post 0.08 0.10 0.13 0.10 0.03 0.02 

 Total collected 15.56 10.90 11.24 12.57 2.60 1.50 

AN+RA 

 Donor Solution 25.09 25.09 25.09 25.09 0.00 0.00 

 15 min 3.53 4.12 5.52 4.39 1.02 0.59 

 30 min 3.53 2.35 1.80 2.56 0.88 0.51 

 45 min 1.51 1.41 1.43 1.45 0.05 0.03 

 60 min 1.66 1.18 0.90 1.25 0.38 0.22 

 Apical post 1.07 2.18 2.43 1.90 0.72 0.42 

 Cells post 3.20 0.06 0.12 1.13 1.80 1.04 

 Total collected 14.49 11.29 12.21 12.66 1.65 0.95 

AN+CA+RA 

 Donor Solution 14.03 14.03 14.03 14.03 0.00 0.00 

 15 min 3.91 4.12 3.10 3.71 0.54 0.31 

 30 min 1.48 3.23 1.30 2.00 1.06 0.61 

 45 min 1.32 0.96 0.97 1.08 0.21 0.12 

 60 min 0.73 1.15 0.77 0.88 0.23 0.13 

 Apical post 1.94 3.26 0.88 2.03 1.19 0.69 

 Cells post 0.10 0.07 0.05 0.07 0.02 0.01 

 Total collected 9.49 12.78 7.07 9.78 2.87 1.66 
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Table C 7: Artemisinin content (µg) per well from chlorogenic acid concentration series 

experiment 

AN content per sample (µg) 

Sample Row A Row B Row C Ave. STD. STD. Error 

AN 

 Donor Solution 8.11 8.11 8.11 8.11 0.00 0.00 

 15 min 1.05 0.37 1.01 0.81 0.38 0.22 

 30 min 1.69 1.20 0.68 1.19 0.51 0.29 

 45 min 1.49 0.78 1.05 1.11 0.36 0.21 

 60 min 0.09 0.36 0.90 0.45 0.41 0.24 

 Apical post 0.09 1.28 2.34 1.24 1.13 0.65 

 Total collected 4.41 3.99 5.98 4.80 1.05 0.60 

AN+CA 1:1 

 Donor Solution 8.95 8.95 8.95 8.95 0.00 0.00 

 15 min 0.35 0.71 1.76 0.94 0.73 0.42 

 30 min 1.19 0.67 1.34 1.06 0.35 0.20 

 45 min 0.76 0.53 1.94 1.08 0.76 0.44 

 60 min 0.16 0.27 1.00 0.48 0.45 0.26 

 Apical post 0.43 0.52 3.82 1.59 1.93 1.12 

 Total collected 2.90 2.70 9.86 5.15 4.08 2.36 

AN+CA 2:1 

 Donor Solution 6.04 6.04 6.04 6.04 0.00 0.00 

 15 min 0.93 1.21 2.60 1.58 0.90 0.52 

 30 min 0.66 1.62 1.26 1.18 0.49 0.28 

 45 min 0.64 1.68 0.30 0.87 0.72 0.42 

 60 min 0.07 0.47 1.04 0.53 0.49 0.28 

 Apical post 0.38 2.01 3.35 1.91 1.49 0.86 

 Total collected 2.68 7.00 8.55 6.08 3.04 1.76 

AN+CA 3:1 

 Donor Solution 5.89 5.89 5.89 5.89 0.00 0.00 

 15 min 2.21 0.73 0.56 1.16 0.91 0.52 

 30 min 1.10 0.72 1.13 0.98 0.23 0.13 

 45 min 0.42 0.78 0.74 0.65 0.20 0.11 

 60 min 0.23 0.41 0.56 0.40 0.17 0.10 

 Apical post 0.51 1.38 3.93 1.94 1.78 1.03 

 Total collected 4.47 4.01 6.92 5.13 1.56 0.90 
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Table C 8: Artemisinin content (µg) per well from camphor concentration series 

experiment 

AN content per sample (µg) 

Sample Row A Row B Row C Ave. STD. STD. Error 

AN 

 Donor Solution 13.89 13.89 13.89 13.89 0.00 0.00 

 15 min 3.44 3.00 4.72 3.72 0.89 0.52 

 30 min 2.74 2.11 1.83 2.23 0.47 0.27 

 45 min 2.13 1.13 0.84 1.37 0.68 0.39 

 60 min 1.36 2.29 0.34 1.33 0.98 0.56 

 Apical post 3.40 7.50 1.77 4.23 2.95 1.71 

 Total collected 13.08 16.04 9.50 12.87 3.27 1.89 

AN+C 1:1 

 Donor Solution 19.20 19.20 19.20 19.20 0.00 0.00 

 15 min 4.07 5.29 3.42 4.26 0.95 0.55 

 30 min 3.70 3.26 1.99 2.98 0.89 0.51 

 45 min 1.53 2.47 3.03 2.35 0.76 0.44 

 60 min 2.87 1.57 3.70 2.71 1.07 0.62 

 Apical post 11.98 12.80 13.72 12.84 0.87 0.50 

 Total collected 24.15 25.40 25.86 25.14 0.88 0.51 

AN+C 2:1 

 Donor Solution 20.04 20.04 20.04 20.04 0.00 0.00 

 15 min 3.65 3.74 2.30 3.23 0.80 0.46 

 30 min 1.59 1.96 2.15 1.90 0.28 0.16 

 45 min 2.29 0.72 2.60 1.87 1.01 0.58 

 60 min 1.71 6.26 1.98 3.31 2.55 1.47 

 Apical post 7.96 1.25 3.72 4.31 3.40 1.96 

 Total collected 17.20 13.92 12.75 14.63 2.31 1.33 

AN+C 10:1 

 Donor Solution 12.79 12.79 12.79 12.79 0.00 0.00 

 15 min 6.38 1.74 3.07 3.73 2.39 1.38 

 30 min 2.81 4.57 1.30 2.89 1.64 0.95 

 45 min 1.21 2.18 2.46 1.95 0.66 0.38 

 60 min 1.50 2.23 2.02 1.92 0.37 0.22 

 Apical post 7.61 12.99 6.95 9.18 3.31 1.91 

 Total collected 19.51 23.71 15.81 19.68 3.96 2.28 
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Table C 9: Student t-test: paired two sample comparing means of AN with AN:C of 10:1 

  AN 
AN+C 
10:1 

Mean 52.16145913 65.78048 

Variance 17.50902152 84.93522 

Observations 3 3 

Pearson Correlation 0.987379258 
 Hypothesized Mean Difference 0 
 df 2 
 t Stat -4.60048336 
 P(T<=t) one-tail 0.022071974 
 t Critical one-tail 2.91998558 
 P(T<=t) two-tail 0.044143948 
 t Critical two-tail 4.30265273   

 

 

 

 

Figure C 1: Papp with varied artemisinin concentration in donor solutions. From each transport 

experiment, the AN concentration in donor solutions varied. To determine the role of AN concentration on rate of 

transport, all control (AN only) Papps were plotted. The polynomial curve fit the points best with a low R
2
 of 0.2655. 

From this figure, the concentration of AN can be used to approximate the rate of transport.  
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Table C 10: ANOVA single factor between Papp from all control transport experiments as 

plotted in Figure C 1. 

        

 

SUMMARY 
     

 

Groups Count Sum Average Variance 
  

 

63.17269 3 0.000164 5.45E-05 3.54E-11 
  

 

150.9236 3 0.000173 5.77E-05 4.65E-11 
  

 

57.43839 3 0.000163 5.44E-05 1.53E-10 
  

 

98.38355 3 0.000232 7.72E-05 7.59E-11 
                  

 

ANOVA 
      

 

Source of Variation SS df MS F P-value F crit 

 
Between Groups 1.08E-09 3 3.6E-10 4.635748 0.036788 4.066181 

 
Within Groups 6.21E-10 8 7.76E-11 

   

        

 

Total 1.7E-09 11         
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