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Abstract: Artemisia annua L. has been reported to show anti-cancer activities. Here, we determined
whether polyphenols extracted from Artemisia annua L. (pKAL) exhibit anti-cancer effects on
radio-resistant MDA-MB-231 human breast cancer cells (RT-R-MDA-MB-231 cells), and further
explored their molecular mechanisms. Cell viability assay and colony-forming assay revealed that
pKAL inhibited cell proliferation on both parental and RT-R-MDA-MB-231 cells in a dose-dependent
manner. The anti-proliferative effects of pKAL on RT-R-MDA-MB-231 cells were superior or similar
to those on parental ones. Western blot analysis revealed that expressions of cluster of differentiation
44 (CD44) and Oct 3/4, matrix metalloproteinase-9 (MMP-9) and signal transducer and activator of
transcription-3 (STAT-3) phosphorylation were significantly increased in RT-R-MDA-MB-231 cells
compared to parental ones, suggesting that these proteins could be associated with RT resistance.
pKAL inhibited the expression of CD44 and Oct 3/4 (CSC markers), and β-catenin and MMP-9 as
well as STAT-3 phosphorylation of RT-R-MDA-MB-231. Regarding upstream signaling, the JNK
or JAK2 inhibitor could inhibit STAT-3 activation in RT-R-MDA-MB-231 cells, but not augmented
pKAL-induced anti-cancer effects. These findings suggest that c-Jun N-terminal kinase (JNK) or
Janus kinase 2 (JAK2)/STAT3 signaling are not closely related to the anti-cancer effects of pKAL.
In conclusion, this study suggests that pKAL exhibit anti-cancer effects on RT-R-MDA-MB-231 cells by
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suppressing CD44 and Oct 3/4, β-catenin and MMP-9, which appeared to be linked to RT resistance
of RT-R-MDA-MB-231 cells.

Keywords: breast cancer cells; polyphenols; Artemisia annua L.; stem cells; EMT

1. Introduction

In recent decades, phytochemicals have been given much attention as potential candidates for
cancer treatment because they exhibit anti-cancer effects without any noticeable toxicities [1]. Among
phytochemicals, natural polyphenols are abundantly present in various edible fruits, vegetables
and herbs, which are assumed to be related to a reduction in cancer risk [2,3]. Artemisia annua L.,
(Gaddongsook, Korean), an annual herb, has been used for a long time as a Korean folk medicine for
the treatment of malaria, fever, and neurologic disorders [4,5]. In addition, it possesses anti-cancer
activity [6]. However, the molecular mechanisms for the anti-cancer activities of Korean Artemisia
annua still need elucidating.

Breast cancer is considered as one of the leading causes of cancer-related death worldwide, and
its incidence is increasing in Korea [7,8]. Although the treatment outcomes for breast cancer have been
improved, resistance to radiation (RT) and/or chemotherapy (CT) is a big obstacle to curing cancer.
One of the major causes for the resistance to RT or CT is cancer stem cells (CSCs). Therefore, the
development of a certain therapy targeted at CSCs holds hope for curing cancer.

Our team previously established radio-resistant MDA-MB 231 human breast cancer cells
(RT-R-MDA-MB 231 cells) which exhibit enhanced aggressiveness, and cancer stem cell features [9,10].
These cells also manifest epithelial–mesenchymal transition (EMT), a process by which epithelial
cells gain migratory and invasive properties to become mesenchymal stem cells. This means that
the induction of EMT could change non-CSCs into CSCs [11–13]. From this evidence, EMT is also
considered as a mechanism for the resistance to RT or CT [14]. Therefore, EMT and CSCs could be
good targets to overcome the resistance to RT or CT.

We previously demonstrated that polyphenols extracted from Korean A. annua L. (pKAL) exhibited
anti-cancer effects by inhibiting the EMT process without showing any significant cytotoxicity on normal
cells [15,16]. Therefore, we hypothesized that pKAL harbors anti-cancer properties in overcoming
radio resistance (RT-resistance) by suppressing CSCs and EMT. If pKAL exhibit significant anti-cancer
effects on RT-R-MDA-MB-231 cells, pKAL-based phytotherapy will be an applicable and helpful option
against resistance to RT or CT in breast cancer. In this study, we established RT-R-MDA-MB-231 cells
following the previous protocol [9], determined whether pKAL would exhibit anti-cancer effects on
the RT-R breast cancer cells, and further explored their molecular mechanisms by assessing the effects
of pKAL on expressions of the proteins that were significantly higher expressed in RT-R-MDA-MB-231
cells than parental MDA-MB-231 cells, and assumed to be related to RT-resistance.

2. Results

2.1. pKAL Inhibited Growth of RT-R-MDA-MB-231 Cells, and Its Efficacy Was Superior or Similar to that on
Parental MDA-MB-231 Cells

To investigate the anti-cancer activity of pKAL on RT-R-MDA-MB-231 cells, we treated them with
indicated concentrations (up to 100 µg/mL) of pKAL for 72 h. MTT assay revealed that pKAL inhibited
the growth of RT-R-MDA-MB-231 cells in a dose-dependent manner, and that RT-R-MDA-MB-231 cells
were as sensitive to pKAL as parental MDA-MB-231 cells during 72 h-pKAL treatment (Figure 1A).
In a colony-forming assay, RT-R-MDA-MB-231 cells grew far faster than parental MDA-MB-231 cells
(Figure 1B). The anti-cancer activity of pKAL on RT-R-MDA-MB-231 cells was superior or similar
to that of parental MDA-MB-231 cells. These findings suggest that pKAL might harbor anti-cancer
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effects on RT-R human breast cancer cells, and its efficacy was superior or similar to that on parental
MDA-MB-231 cells.

Molecules 2020, 25, x FOR PEER REVIEW 3 of 12 

 

anti-cancer effects on RT-R human breast cancer cells, and its efficacy was superior or similar to that 
on parental MDA-MB-231 cells. 

 

Figure 1. Similar inhibitory effect of pKAL on RT-R-MDA-MB-231 human breast cancer cells, which 
was similar to that on parental MDA-MB-231 cells. (A) Parental and RT-R-MDA-MB-231 cells were 
treated with the indicated concentrations of pKAL for 24–72 h, and then cell viability was performed 
by MTT assay. (B) Parental and RT-R-MDA-MB-231 cells were treated with the indicated 
concentrations of pKAL for 24 h. Then, the medium was changed with fresh complete medium. Ten 
days later, colony formation assay was performed as described in the methods. They were quantified 
by counting the colonies. The values are expressed as the means ± SEM from three independent 
experiments (* p < 0.05 vs. each control, ** p < 0.01 vs. each control, and ## p < 0.01 vs. control for RT-R-
MDA-MB-231 cells). 

2.2. pKAL Significantly Inhibited Expression of Stem Cell Markers (CD44, And Oct 3/4), Β-Catenin, and 
MMP-9 that Were Overexpressed in RT-R-MDA-MB-231 Cells Compared to Parental MDA-MB-231 Cells 

In this study, several markers-CD44 and Oct-3/4 (octamer-binding transcription factor 3/4), β-
catenin, and MMP-9-were chosen for RT resistance, for they were significantly increased after 
acquiring resistance to RT in previous study [9]. In addition, they are related to CSCs, cancer 
progression, and EMT. CD44 and Oct-3/4 are the most robust surface markers for CSCs [17,18], and 
these are strongly linked to RT resistance [19–21]. WNT/beta-catenin mediates the radiation 
resistance of breast progenitor cells [14]. β-catenin is an important molecule involved in EMT [22–24]. 
MMP-9 is most widely associated with cancer progression, due to its role in extracellular matrix 
remodeling and angiogenesis [25,26]. Therefore, we investigated the effects of pKAL on the 
expression of CD44, Oct 3/4, β-catenin, and MMP-9 of RT-R-MDA-MB-231 cells as well as of parental 
MDA-MB-231 cells. Western blot analysis revealed that while the expression of β-catenin was slightly 
increased in RT-R-MDA-MB-231 compared to those in parental MDA-MB-231 cells, the expressions 
of CD44, Oct 3/4, and MMP-9 were significantly increased in RT-R-MDA-MB-231 cells, suggesting 
that the expressions of CD44, Oct 3/4, and MMP-9 would be related to RT-resistance of MDA-MB-231 
cells. Even though the difference in the expression of β-catenin was not statistically significant 
between parental and RT-R-MDA-MB-231 cells, pKAL inhibited the expression of β-catenin in a dose-

Figure 1. Similar inhibitory effect of pKAL on RT-R-MDA-MB-231 human breast cancer cells, which
was similar to that on parental MDA-MB-231 cells. (A) Parental and RT-R-MDA-MB-231 cells were
treated with the indicated concentrations of pKAL for 24–72 h, and then cell viability was performed by
MTT assay. (B) Parental and RT-R-MDA-MB-231 cells were treated with the indicated concentrations of
pKAL for 24 h. Then, the medium was changed with fresh complete medium. Ten days later, colony
formation assay was performed as described in the methods. They were quantified by counting the
colonies. The values are expressed as the means ± SEM from three independent experiments (* p < 0.05
vs. each control, ** p < 0.01 vs. each control, and ## p < 0.01 vs. control for RT-R-MDA-MB-231 cells).

2.2. pKAL Significantly Inhibited Expression of Stem Cell Markers (CD44, And Oct 3/4), B-Catenin, and
MMP-9 that Were Overexpressed in RT-R-MDA-MB-231 Cells Compared to Parental MDA-MB-231 Cells

In this study, several markers-CD44 and Oct-3/4 (octamer-binding transcription factor 3/4),
β-catenin, and MMP-9-were chosen for RT resistance, for they were significantly increased after
acquiring resistance to RT in previous study [9]. In addition, they are related to CSCs, cancer
progression, and EMT. CD44 and Oct-3/4 are the most robust surface markers for CSCs [17,18], and
these are strongly linked to RT resistance [19–21]. WNT/beta-catenin mediates the radiation resistance
of breast progenitor cells [14]. β-catenin is an important molecule involved in EMT [22–24]. MMP-9
is most widely associated with cancer progression, due to its role in extracellular matrix remodeling
and angiogenesis [25,26]. Therefore, we investigated the effects of pKAL on the expression of CD44,
Oct 3/4, β-catenin, and MMP-9 of RT-R-MDA-MB-231 cells as well as of parental MDA-MB-231
cells. Western blot analysis revealed that while the expression of β-catenin was slightly increased in
RT-R-MDA-MB-231 compared to those in parental MDA-MB-231 cells, the expressions of CD44, Oct 3/4,
and MMP-9 were significantly increased in RT-R-MDA-MB-231 cells, suggesting that the expressions
of CD44, Oct 3/4, and MMP-9 would be related to RT-resistance of MDA-MB-231 cells. Even though
the difference in the expression of β-catenin was not statistically significant between parental and
RT-R-MDA-MB-231 cells, pKAL inhibited the expression of β-catenin in a dose-dependent manner
in RT-R-MDA-MB-231 cells, and its effect was significant at the concentration of 50 µg/mL pKAL or
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higher (Figure 2A–D, respectively). These findings suggest that the pKAL have the ability to inhibit the
proteins that appeared to be related to RT resistance and associated with the stemness characteristics,
and EMT phenotype of RT-R-MDA-MB-231 cells.
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Figure 2. Inhibitory effects of Artemisia annua L. (pKAL) on the expression of stem cell markers
(CD44 and Oct 3/4), β-catenin and the activity of MMP-9 in both parental and RT-R-MDA-MB-231
cells. The cells were treated with the indicated concentrations of pKAL for 24 h. The expressions of
CD44 (A), Oct3/4 (B) and β-catenin (C) were measured from the cell lysates by Western blot analysis.
(D) The activity of MMP-9 was examined by gelatin zymography. The band density was quantified by
densitometry, and the values are expressed as the means ± SEM from three independent determinations
(** p < 0.01 vs. control for parental MDA-MB-231 cells, # p < 0.05 vs. control for RT-R-MDA-MB-231
cells, and ## p < 0.01 vs. control for RT-R-MDA-MB-231 cells).

2.3. pKAL Inhibited STAT 3 Activity that Compared to in Parental MDA-MB-231 Cells, Was Significantly
Increased in RT-R-MDA-MB-231 Cells

It was reported that stem cell-like breast cancer cells showed high STAT3 activation and the
JAK2/STAT3 signaling pathway is important in maintaining stem cell characteristics [27]. Upregulated
STAT3 activity also participates and plays an important role in EMT [28,29]. Here, we investigated
the effects of pKAL on STAT3 activity in RT-R-MDA-MB-231 cells, as well as parental MDA-MB-231
cells. Western blot analysis revealed that STAT3 activity in RT-R-MDA-MB-231 cells was significantly
increased compared to that in parental MDA-MB-231 cells, and that pKAL inhibited the STAT3 activity
of RT-R-MDA-MB-231 cells in a dose-dependent manner (Figure 3). These findings suggest that pKAL
might show anti-cancer effects on RT-R-MDA-MB-231 cells by suppressing STAT3 activity, which
appeared to be linked to stemness characteristics and EMT phenotype as well as RT-resistance.
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Figure 3. Inhibitory effects of pKAL on STAT3 phosphorylation of both parental and RT-R-MDA-MB-231
cells. The cells were treated with indicated concentrations of pKAL for 24 h. The expressions of p-STAT3
and STAT3 proteins were measured by western blot analysis. The band density was measured by
densitometry, and the values are expressed as the means ± SEM from three independent determinations
(** p < 0.01 vs. control for parental MDA-MB-231 cells, and ## p < 0.01 vs. control for RT-R-MDA-
MB-231 cells).

2.4. The Anti-Cancer Effects of pKAL on RT-R-MDA-MB-231 Cells Were not Closely Associated with
JAK2/STAT3 Signaling

As previously mentioned, JAK2/STAT3 signaling pathway is reportedly important in maintaining
stem cell characteristic [27]. To confirm that, here we performed a JNK or JAK2 inhibitor test by assessing
the anti-cancer effects of pKAL on CD44, Oct 3/4, β-catenin, and MMP-9 as well as the STAT 3 activity
of RT-R-MDA-MB-231 cells. The reason why we add a JNK inhibitor is because JNK signaling is also
related to STAT3 activity [30], and is to confirm that the JAK2/STAT3 signaling pathway uniquely plays
an important role in maintaining self-renewal and tumor initiating capacity of CSCs, and enhancing
stemness characters. Western blot analysis revealed that pKAL inhibited STAT3 activity, which is
up-regulated in RT-R-MDA-MB-231 cells compared to in parental MDA-MB-231 cells, (Figure 4A,B),
and that the JNK or JAK2 inhibitor alone also inhibited STAT3 activity on both RT-R-MDA-MB-231
cells and MDA-MB-231 cells (Figure 4A,B). However, the JNK or JAK2 inhibitor could neither augment
the anti-cancer effects of pKAL on STAT3 activity (Figure 4A,B), nor on the expressions of CD44, Oct
3/4, β-catenin, and MMP-9 of RT-R-MDA-MB-231 cells (Figure 5). Moreover, the JNK or JAK2 inhibitor
could not suppress the expression CD44 of RT-R-MDA-MB-231 cells (Figure 5A,B), while the JAK2
inhibitor could inhibit the expressions of Oct 3/4, β-catenin, and MMP-9 in RT-R-MDA-MB-231 cells
(Figure 5C,D). These findings suggest that pKAL-induced anti-cancer effects might not be closely
associated with JAK2/STAT3 signaling, while JAK2 inhibited STAT3 activity and the expressions of Oct
3/4, β-catenin, and MMP-9 of RT-R-MDA-MB-231 cells.
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Figure 4. The effects of the JNK or JAK2 inhibitor alone or in combination with pKAL on the STAT3
phosphorylation of both parental and RT-R-MDA-MB-231 cells. The cells were treated with the
indicated agent alone or in combination with pKAL for 24 h. The expressions of p-STAT3 or STAT3
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± SEM from three independent determinations (** p < 0.01 vs. control for parental MDA-MB-231 cells,
and ## p < 0.01 vs. control for RT-R-MDA-MB-231 cells).
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Figure 5. Inhibitory effects of pKAL in combination with the JNK or JAK2 inhibitor on the expression
of stem cell markers (CD44 and Oct 3/4), β-catenin, and the activity of MMP-9 in both parental and
RT-R-MDA-MB-231 cells. The cells were treated with indicated concentrations of pKAL for the indicated
concentrations of pKAL for 24 h. The expressions of CD44 (A), Oct3/4 (B) and β-catenin (C), and the
activity of MMP-9 (D) were measured as described in the Figure 2 legend. The values are expressed
as the means ± SEM from three independent determinations (** p < 0.01 vs. control for parental
MDA-MB-231 cells, # p < 0.05 vs. control for RT-R-MDA-MB-231 cells, and ## p < 0.01 vs. control for
RT-R-MDA-MB-231 cells).
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3. Discussion

The present study was designed to determine whether pKAL could overcome the RT resistance of
RT-R-MDA-MB-231 cells by showing its anti-cancer activities on RT-R-MDA-MB-231 human breast
cancer cells, and to further explore their molecular mechanisms, focusing on changes in the expression
of proteins that might be related to the RT resistance of RT-R-MDA-MB-231 cells and are used as
markers for CSCs, EMT, and cancer progression. In this study, pKAL clearly demonstrated a significant
anti-cancer effect on RT-R-MDA-MB-231 cells, and its efficacy was superior or similar to that of
parental MDA-MB-231 cells. In addition, pKAL inhibited expressions of the proteins (CD44, Oct
3/4, β-catenin and MMP-9) that are assumed to be related to the RT resistance of RT-R-MDA-MB-231
human breast cancer cells [9]. With these findings, we concluded that pKAL exhibits anti-cancer effects
on RT-R-MDA-MB-231 cells, by suppressing the expressions of proteins which appeared to be linked
to the RT resistance, CSCs, EMT, and cancer progression of RT-R-MDA-MB-231 cells. Regarding this
conclusion, readers may raise some questions. The first one would be about the relationship between
RT resistance and stemness. Another would be about the validity of CD44 and Oct 3/4 as the stem cell
markers. Since the two questions are very closely related, we here discuss them together. Regarding a
link between RT resistance and stemness, this question still has some controversies, but it is becoming
apparent that cancer cells showing RT resistance are enriched with the cells showing stem cell and
EMT phenotypes [31]. In addition, CD44 is frequently used as a stem cell marker and strongly linked
to RT resistance [19,21]. Oct-3/4 also participates in the self-renewal of undifferentiated stem cells [18]
and RT resistance [20]. Therefore, many investigators believe that EMT and cancer stemness are the
main mechanisms for RT resistance [14,32,33].

The third one would be about whether β-catenin and MMP-9 are involved in RT resistance.
To clearly answer this question, further study is needed, but β-catenin and MMP-9 are important
molecules clearly involved in EMT [22–24,34] and cancer progression [25,26,35]. In addition, these
proteins were significantly increased in RT-R MDA-MB-231 cells.

The fourth one would be whether STAT3 activity is involved in RT resistance, and controlling the
expressions of CD44, Oct 3/4, β-catenin and MMP-9. With our results, we cannot give a clear answer
yet, because STAT3 signaling is highly inter-connected with other signals while participating in breast
cancer progression, EMT, and the maintenance of CSC characteristics. In addition, other molecular
signaling pathways such as WNT and NOTCH signaling pathways are also involved in EMT and
the acquisition of stem cell properties [36,37]. Even though we could not give clear evidence, it is
still possible that STAT 3 activity is at least partly involved in RT resistance of MDA-MB-231 breast
cancer cells and the regulation of the expressions of CD44, Oct 3/4, β-catenin and MMP-9 because
many reports showed that STAT3 activity is closely associated with stem cell-like traits, EMT, and drug
resistance [27,38].

The fifth one would be whether stem cell and EMT phenotypes are related to cancer progression
and the aggressive phenotypes that are observed in RT-R-MDA-MB-231 cells, compared to parental
MDA-MB-231 cells. This feature should be related to radiation resistance or radiation itself, because
populations of the irradiated CSCs become more aggressive than those of non-irradiated CSCs [31].
Actually, MDA-MB-231 cells that belong to basal-like cancer with a high population of CSCs grows
more slowly than luminal type MCF-7 breast cancer cells with a low population of CSCs (data not
shown) [27]. This finding suggests that the aggressive feature could be attributed to RT resistance rather
than that of the CSCs, themselves. In addition, highly proliferative features of RT-R-MDA-MB-231
cells were observed after acquiring RT resistance [9].

The weakness of this study is that the main mechanism of overcoming the drug resistance of
pKAL was not clear about how pKAL inhibited the expression of CD44, Oct 3/4 β-catenin and MMP-9
that might be associated with the inhibition of RT resistance in RT-R-MDA-MB-231 cells. This would
be a very important question. Until now, many therapies that target the EMT/CSC phenotype have
been identified, but the exact mechanisms are still unclear [39,40]. Studies suggest that the cancer
progression and metastasis is associated with the acquisition of stemness and EMT pattern. In addition,
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several other studies have suggested that the two functions (acquisition of stemness and EMT pattern)
are closely linked in cancer progression [13,36]. Regarding the relationship between radiation resistance
and the acquisition of stemness and EMT pattern in RT-R-MDA-MB-231 cells, further investigations
are required.

Lastly, the merit of pKAL is that, as previously mentioned, pKAL exhibits anti-cancer effects
without any noticeable toxicities. At the concentrations where pKAL showed no toxicity on the normal
cells [16], it induced anti-cancer activity on RT-R-MDA-MB-231 cells with similar efficacy to paternal
MDA-MB-231 cells. This finding suggests that pKAL could be clinically applicable and helpful for
RT-resistant end-stage breast cancer, especially for the patients with a poor general condition who
cannot tolerate other palliative conventional chemotherapy.

In conclusion, this study suggests pKAL exhibits anti-cancer effects on RT-R-MDA-MB-231 cells, by
suppressing CD44 and Oct 3/4, β-catenin and MMP-9 which appeared to be linked to the RT resistance
of RT-R-MDA-MB-231 cells. The inhibition of these four proteins by pKAL was not associated with
JNK-, JAK-2-associated STAT3 activity, while pKAL inhibited STAT3 activity in RT-R-MDA-MB-231
cells. This study provides evidence that pKAL might have an anti-cancer property on RT-R human
breast cancer cells, and can be used as therapeutic potential for the treatment of breast cancer.

4. Materials and Methods

4.1. Preparation of Polyphenols from Korean Artemisia annua L.

Polyphenols were extracted from Korean A. annua L. (pKAL) and characterized by Professor
Shin (Gyeongsang National University, Jinju, Korea) [5]. Briefly, the lyophilized Korean A. annua L.
(KAL) tissues including roots, stems, leaves, and flowers (10 g) were ground into powder, extracted in
ethyl acetate (300 mL) at 80 ◦C for 20 h, and eluted with a mixture of methanol:dichloromethane (1:5,
25 mL). The isolated polyphenol mixtures were identified by HPLC-MS/MS according to the previous
method [41].

4.2. Chemicals and Reagents

The MDA-MB-231 human breast cancer cells that were obtained from the Korea Cell Line Bank
(Seoul, Korea), were cultured in RPMI 1640 medium from HyClone (Logan, UT, USA) supplemented
with 10% (v/v) fetal bovine serum (FBS) from GIBCO BRL (Grand Island, NY, USA), 1 mM L-glutamine,
100 U/mL penicillin, and 100 µg/mL streptomycin at 37 ◦C in a humidified atmosphere of 95% air
and 5% CO2. Antibodies against anti-octamer-binding transcription factor (Oct3/4) and β-catenin
were purchased from Santa Cruz Biotechnology (Dallas, Texas, TX, USA). Antibodies against CD44,
STAT3, and phosphor-STAT3 were purchased from Cell Signaling Technology (Beverly, MA, USA).
An antibody against β-actin was from Sigma (Beverly, MA, USA). Peroxidase-labeled goat anti-rabbit
was purchased from Santa Cruz Biotechnology and an enhanced chemiluminescence (ECL) kit was
purchased from Bio-Rad (Hercules, CA, USA). All other chemicals not specifically cited here were
purchased from Sigma-Aldrich (St. Louis, MO, USA).

4.3. Establishment of Radio-Resistant MDA-MB-231 Human Breast Cancer Cells (RT-R-MDA-MB-231 Cells)

According to the previous protocol [9], RT-R-MDA-MB-231 cells were generated by applying
repetitive small doses of X-ray irradiation (2 Gy) using a 6-MV photon beam produced by a linear
accelerator (Clinac 21EX, Varian Medical Systems, Inc., Palo Alto, CA) until a final dose of 50 Gy was
achieved. The radiation dose rate was 1.0 Gy/min, and the cell medium was changed immediately
after irradiation. When the cells reached ~90% confluence, they were sub-cultured into new flasks.
At about 70% confluence, irradiation was resumed.
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4.4. Cell Viability Assay

The cell viability assay was performed with 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium
bromide (MTT) assay. For the MTT assay, paternal and RT-R-MDA-MB-231 cells were treated with
pKAL for 24–72 h, and then incubated in 0.1 mg/mL MTT solution for 3 h at 37 ◦C in the dark. The
absorbance of each well was measured at 540 nm with an enzyme-linked immunosorbent assay (ELISA)
reader (Sunnyvale, CA, USA).

4.5. Colony Formation Assay

Parental or RT-R-MDA-MB-231 cells were seeded in 6-well plates (1 × 103 cells/well). Then, the
cells were treated with pKAL at the indicated concentrations at 37 ◦C. After 24 h of treatment, the
culture medium was discarded and replaced with fresh complete medium every 2–3 days. After
10 days, the medium was discarded, and each well was washed with PBS. The colonies were fixed in
100% methanol for 10 min, and then stained with 0.1% Giemsa staining solution for 30 min at room
temperature. The number of visible colonies was counted.

4.6. Western Blot Analysis

After being treated with pKAL at the indicated concentrations for 24 h, the cells were harvested
and lysed. Their proteins were quantified by the Bradford method. The proteins of the extracts were
resolved by electrophoresis, electrotransferred to a polyvinylidene difluoride membrane (Amersham
Biosciences, Little Chalfont, UK), and then the membrane was incubated with the primary antibodies
followed by a conjugated secondary antibody to peroxidase. The blots were developed under an ECL
detection system (Bio-Rad).

4.7. Gelatin Aymography

The gelatinolytic activities for MMP-9 (gelatinase-B) were assessed as previously described [42].
Briefly, polyacrylamide gels containing 1 mg/mL gelatin were run at 120 V, washed in 2.5% Triton
X-100 for 1 h, and then incubated for 16 h at 37 ◦C in an activation buffer (50 mM Tris-HCl, 20 mM
NaCl, 5 mM CaCl2 and 0.02% Brij35, pH 7.5). After staining with Coomassie Blue for 2 h, the gel
was washed with a solution of 10% glacial acetic acid and 30% methanol for 1 h. White lysis zones
indicating gelatin degradation were revealed by staining with Coomassie Brilliant Blue.

4.8. Statistical Analysis

The results were expressed as means ± SEM from at least three independent experiments.
Significant differences were determined by the one-way analysis of variance (ANOVA) with post-test
Newman–Keuls for comparison of at least three treatment groups and Student’s t-test for two groups.
Statistical significance was defined as p < 0.05.
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